Models that contain the Model Concept : Ephaptic coupling

(Coupling between nerves by direct influences of the electric field generated by voltage changes in those nerves.)
Re-display model names without descriptions
    Models   Description
1.  Actions of Rotenone on ionic currents and MEPPs in Mouse Hippocampal Neurons (Huang et al 2018)
" ... With the aid of patch-clamp technology and simulation modeling, the effects of (Rotenone) Rot on membrane ion currents present in mHippoE-14 cells were investigated. Results: Addition of Rot produced an inhibitory action on the peak amplitude of INa ...; however, neither activation nor inactivation kinetics of INa was changed during cell exposure to this compound. Addition of Rot produced little or no modifications in the steady-state inactivation curve of INa. Rot increased the amplitude of Ca2+-activated Cl- current in response to membrane depolarization ... . Moreover, when these cells were exposed to 10 µM Rot, a specific population of ATP-sensitive K+ channels ... was measured, despite its inability to alter single-channel conductance. Under current clamp condition, the frequency of miniature end-plate potentials in mHippoE-14 cells was significantly raised in the presence of Rot (10 µM) with no changes in their amplitude and time course of rise and decay. In simulated model of hippocampal neurons incorporated with chemical autaptic connection, increased autaptic strength to mimic the action of Rot was noted to change the bursting pattern with emergence of subthreshold potentials. Conclusions: The Rot effects presented herein might exert a significant action on functional activities of hippocampal neurons occurring in vivo. "
2.  Ephaptic coupling in passive cable and MSO neuron models (Goldwyn & Rinzel 2016)
Simulation code to explore how the synchronous activity of a bundle of neurons generates extracellular voltage, and how this extracellular voltage influences the membrane potential of "nearby" neurons. A non-synaptic mechanism known as ephaptic coupling. A model of a passive cable population (including user-friendly matlab GUI) and a model of medial superior olive neurons are included.
3.  Ephaptic interactions in olfactory nerve (Bokil et al 2001)
Bokil, H., Laaris, N., Blinder, K., Ennis, M., and Keller, A. (2001) Ephaptic interactions in the mammalian olfactory system. J. Neurosci. 21:RC173(1-5)
4.  Extracellular fields for a three-dimensional network of cells using NEURON (Appukuttan et al 2017)
" ... In the present work, we demonstrate a technique to couple the extracellular fields of individual cells within the NEURON simulation environment. The existing features of the simulator are extended by explicitly defining current balance equations, resulting in the coupling of the extracellular fields of adjacent cells. ..."
5.  Model of peripheral nerve with ephaptic coupling (Capllonch-Juan & Sepulveda 2020)
We built a computational model of a peripheral nerve trunk in which the interstitial space between the fibers and the tissues is modelled using a resistor network, thus enabling distance-dependent ephaptic coupling between myelinated axons and between fascicles as well. We used the model to simulate a) the stimulation of a nerve trunk model with a cuff electrode, and b) the propagation of action potentials along the axons. Results were used to investigate the effect of ephaptic interactions on recruitment and selectivity stemming from artificial (i.e., neural implant) stimulation and on the relative timing between action potentials during propagation.

Re-display model names without descriptions