Models that contain the Cell : Neocortex layer 4 pyramidal cell

Re-display model names without descriptions
    Models   Description
1.  Allen Institute: Nr5a1-Cre VISp layer 4 329322394
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
2.  Allen Institute: Nr5a1-Cre VISp layer 4 472306544
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
3.  Allen Institute: Nr5a1-Cre VISp layer 4 472442377
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
4.  Allen Institute: Nr5a1-Cre VISp layer 4 472451419
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
5.  Allen Institute: Nr5a1-Cre VISp layer 4 472915634
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
6.  Allen Institute: Nr5a1-Cre VISp layer 4 473834758
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
7.  Allen Institute: Nr5a1-Cre VISp layer 4 473863035
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
8.  Allen Institute: Nr5a1-Cre VISp layer 4 473871429
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
9.  Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
This is an Allen Cell Types Database model of a Rorb-IRES2-Cre-D neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
10.  Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
This is an Allen Cell Types Database model of a Scnn1a-Tg2-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
11.  Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
This is an Allen Cell Types Database model of a Scnn1a-Tg2-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
12.  Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
This is an Allen Cell Types Database model of a Scnn1a-Tg2-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
13.  Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
This is an Allen Cell Types Database model of a Scnn1a-Tg2-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
14.  Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
15.  Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
16.  Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
17.  Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
18.  Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
19.  Alpha rhythm in vitro visual cortex (Traub et al 2020)
The paper describes an experimental model of the alpha rhythm generated by layer 4 pyramidal neurons in a visual cortex slice. The simulation model is derived from that of Traub et al. (2005) J Neurophysiol, developed for thalamocortical oscillations.
20.  Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
The code is an extension of the thalamocortical model of Traub et al. (2005) J Neurophysiol. It is here applied to an in vitro model of the electrodecremental response seen in the EEG of children with infantile spasms (West syndrome)
21.  Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
" ...The aim of this study was to use an established thalamocortical computer model to determine how T-type calcium channels work in concert with cortical excitability to contribute to pathogenesis and treatment response in CAE. METHODS: The model is comprised of cortical pyramidal, cortical inhibitory, thalamocortical relay, and thalamic reticular single-compartment neurons, implemented with Hodgkin-Huxley model ion channels and connected by AMPA, GABAA , and GABAB synapses. Network behavior was simulated for different combinations of T-type calcium channel conductance, inactivation time, steady state activation/inactivation shift, and cortical GABAA conductance. RESULTS: Decreasing cortical GABAA conductance and increasing T-type calcium channel conductance converted spindle to spike and wave oscillations; smaller changes were required if both were changed in concert. In contrast, left shift of steady state voltage activation/inactivation did not lead to spike and wave oscillations, whereas right shift reduced network propensity for oscillations of any type...."
22.  LFP signature of monosynaptic thalamocortical connection (Hagen et al 2017)
"A resurgence has taken place in recent years in the use of the extracellularly recorded local field potential (LFP) to investigate neural network activity. To probe monosynaptic thalamic activation of cortical postsynaptic target cells, so called spike-trigger-averaged LFP (stLFP) signatures have been measured. In these experiments, the cortical LFP is measured by multielectrodes covering several cortical lamina and averaged on spontaneous spikes of thalamocortical (TC) cells. Using a well established forward-modeling scheme, we investigated the biophysical origin of this stLFP signature with simultaneous synaptic activation of cortical layer-4 neurons, mimicking the effect of a single afferent spike from a single TC neuron. ..."
23.  Non-Weak E-Fields Pyramidal Neurons (Reznik et. al.,2015)
Effect of Polarization Induced by Non-Weak Electric Fields on the Excitability of Elongated Neurons With Active Dendrite. In response to polarization, the active currents in the dendrites of pyramidal neurons play a pivotal role in the excitability of elongated neurons. Depending on a number of parameters either hyperpolarizing or depolarizing currents in the dendrite dominate as polarization is increased. Furthermore, the impact that these active dendrite channels (Ca, KAHP, etc) occur when only a small fraction of their channels are open.
24.  Perceptual judgments via sensory-motor interaction assisted by cortical GABA (Hoshino et al 2018)
"Recurrent input to sensory cortex, via long-range reciprocal projections between motor and sensory cortices, is essential for accurate perceptual judgments. GABA levels in sensory cortices correlate with perceptual performance. We simulated a neuron-astrocyte network model to investigate how top-down, feedback signaling from a motor network (Nmot) to a sensory network (Nsen) affects perceptual judgments in association with ambient (extracellular) GABA levels. In the Nsen, astrocytic transporters modulated ambient GABA levels around pyramidal cells. A simple perceptual task was implemented: detection of a feature stimulus presented to the Nsen. ..."
25.  Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
"Highlights • Two network models of the mouse primary visual cortex are developed and released • One uses compartmental-neuron models and the other point-neuron models • The models recapitulate observations from in vivo experimental data • Simulations identify experimentally testable predictions about cortex circuitry"
26.  Theory of sequence memory in neocortex (Hawkins & Ahmad 2016)
"... First we show that a neuron with several thousand synapses segregated on active dendrites can recognize hundreds of independent patterns of cellular activity even in the presence of large amounts of noise and pattern variation. We then propose a neuron model where patterns detected on proximal dendrites lead to action potentials, defining the classic receptive field of the neuron, and patterns detected on basal and apical dendrites act as predictions by slightly depolarizing the neuron without generating an action potential. By this mechanism, a neuron can predict its activation in hundreds of independent contexts. We then present a network model based on neurons with these properties that learns time-based sequences. ..."
27.  Visual physiology of the layer 4 cortical circuit in silico (Arkhipov et al 2018)
"Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo- cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. ..."

Re-display model names without descriptions