| Models |
1. |
2D model of olfactory bulb gamma oscillations (Li and Cleland 2017)
|
2. |
3D model of the olfactory bulb (Migliore et al. 2014)
|
3. |
3D olfactory bulb: operators (Migliore et al, 2015)
|
4. |
A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
|
5. |
A computational approach/model to explore NMDA receptors functions (Keller et al 2017)
|
6. |
A dendritic disinhibitory circuit mechanism for pathway-specific gating (Yang et al. 2016)
|
7. |
A detailed data-driven network model of prefrontal cortex (Hass et al 2016)
|
8. |
A fast model of voltage-dependent NMDA Receptors (Moradi et al. 2013)
|
9. |
A mathematical model of a neurovascular unit (Dormanns et al 2015, 2016) (Farrs & David 2011)
|
10. |
A model of unitary responses from A/C and PP synapses in CA3 pyramidal cells (Baker et al. 2010)
|
11. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
12. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (CellML)
|
13. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (SBML)
|
14. |
A simplified model of NMDA oscillations in lamprey locomotor neurons (Huss et al. 2008)
|
15. |
A single column thalamocortical network model (Traub et al 2005)
|
16. |
A spatial model of the intermediate superior colliculus (Moren et. al. 2013)
|
17. |
A synapse model for developing somatosensory cortex (Manninen et al 2020)
|
18. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
19. |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
|
20. |
Acetylcholine Boosts Dendritic NMDA Spikes in a CA3 Pyramidal Neuron Model (Humphries et al., 2021)
|
21. |
Active dendrites shape signaling microdomains in hippocampal neurons (Basak & Narayanan 2018)
|
22. |
Active dendritic integration in robust and precise grid cell firing (Schmidt-Hieber et al 2017)
|
23. |
Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005)
|
24. |
An allosteric kinetics of NMDARs in STDP (Urakubo et al. 2008)
|
25. |
An attractor network model of grid cells and theta-nested gamma oscillations (Pastoll et al 2013)
|
26. |
AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
|
27. |
Application of a common kinetic formalism for synaptic models (Destexhe et al 1994)
|
28. |
Ave. neuron model for slow-wave sleep in cortex Tatsuki 2016 Yoshida 2018 Rasmussen 2017 (all et al)
|
29. |
BCM-like synaptic plasticity with conductance-based models (Narayanan Johnston, 2010)
|
30. |
Biologically Constrained Basal Ganglia model (BCBG model) (Lienard, Girard 2014)
|
31. |
Biophysical and phenomenological models of spike-timing dependent plasticity (Badoual et al. 2006)
|
32. |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
|
33. |
Bursting in dopamine neurons (Li YX et al 1996)
|
34. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
35. |
CA1 network model for place cell dynamics (Turi et al 2019)
|
36. |
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2020)
|
37. |
CA1 pyr cell: Inhibitory modulation of spatial selectivity+phase precession (Grienberger et al 2017)
|
38. |
CA1 pyr cell: phenomenological NMDAR-based model of synaptic plasticity (Dainauskas et al 2023)
|
39. |
CA1 pyramidal cell receptor dependent cAMP dynamics (Chay et al. 2016)
|
40. |
CA1 pyramidal neuron dendritic spine with plasticity (O`Donnell et al. 2011)
|
41. |
CA1 pyramidal neuron synaptic integration (Bloss et al. 2016)
|
42. |
CA1 pyramidal neuron synaptic integration (Li and Ascoli 2006, 2008)
|
43. |
CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)
|
44. |
CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)
|
45. |
CA1 pyramidal neuron: dendritic spike initiation (Gasparini et al 2004)
|
46. |
CA1 pyramidal neuron: depolarization block (Bianchi et al. 2012)
|
47. |
CA1 pyramidal neuron: nonlinear a5-GABAAR controls synaptic NMDAR activation (Schulz et al 2018)
|
48. |
CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)
|
49. |
CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)
|
50. |
CA1 stratum radiatum interneuron multicompartmental model (Katona et al. 2011)
|
51. |
CA3 Network Model of Epileptic Activity (Sanjay et. al, 2015)
|
52. |
Calcium influx during striatal upstates (Evans et al. 2013)
|
53. |
Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
|
54. |
Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
|
55. |
Cell-type specific integration of feedforward and feedback synaptic inputs (Ridner et al, 2022)
|
56. |
Central Nervous System tadpole model in Matlab and NEURON-Python (Ferrario et al, 2021)
|
57. |
Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)
|
58. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
59. |
Cerebellar granule cell (Masoli et al 2020)
|
60. |
Cerebellar Model for the Optokinetic Response (Kim and Lim 2021)
|
61. |
Cerebellar nuclear neuron (Sudhakar et al., 2015)
|
62. |
Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
|
63. |
Cerebellum granule cell FHF (Dover et al. 2016)
|
64. |
Circadian rhythmicity shapes astrocyte morphology and neuronal function in CA1 (McCauley et al 2020)
|
65. |
Coincident glutamatergic depolarization effects on Cl- dynamics (Lombardi et al, 2021)
|
66. |
Coincident signals in Olfactory Bulb Granule Cell spines (Aghvami et al 2019)
|
67. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
68. |
Comparison of full and reduced globus pallidus models (Hendrickson 2010)
|
69. |
Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
|
70. |
Comprehensive models of human cortical pyramidal neurons (Eyal et al 2018)
|
71. |
Computational analysis of NN activity and spatial reach of sharp wave-ripples (Canakci et al 2017)
|
72. |
Computer simulations of neuron-glia interactions mediated by ion flux (Somjen et al. 2008)
|
73. |
Conditions of dominant effectiveness of distal dendrites (Korogod, Kulagina 1998)
|
74. |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
|
75. |
Cortical model with reinforcement learning drives realistic virtual arm (Dura-Bernal et al 2015)
|
76. |
Cortical network model of posttraumatic epileptogenesis (Bush et al 1999)
|
77. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
78. |
Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
|
79. |
Decorrelation in the developing visual thalamus (Tikidji-Hamburyan et al, accepted)
|
80. |
Dendrites enable a robust mechanism for neuronal stimulus selectivity (Caze et al 2017)
|
81. |
Dendritic action potentials and computation in human layer 2/3 cortical neurons (Gidon et al 2020)
|
82. |
Dendritic Discrimination of Temporal Input Sequences (Branco et al. 2010)
|
83. |
Dendritic spine geometry, spine apparatus organization: spatiotemporal Ca dynamics (Bell et al 2019)
|
84. |
Dentate Gyrus Feed-forward inhibition (Ferrante et al. 2009)
|
85. |
Dentate Gyrus model including Granule cells with dendritic compartments (Chavlis et al 2017)
|
86. |
DG adult-born granule cell: nonlinear a5-GABAARs control AP firing (Lodge et al, 2021)
|
87. |
Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)
|
88. |
Discrimination on behavioral time-scales mediated by reaction-diffusion in dendrites (Bhalla 2017)
|
89. |
Distal inhibitory control of sensory-evoked excitation (Egger, Schmitt et al. 2015)
|
90. |
Distance-dependent synaptic strength in CA1 pyramidal neurons (Menon et al. 2013)
|
91. |
Distinct integration properties of noisy inputs in active dendritic subunits (Poleg-Polsky 2019)
|
92. |
Distributed working memory in large-scale macaque brain model (Mejias and Wang, 2022)
|
93. |
Dopamine-modulated medium spiny neuron, reduced model (Humphries et al. 2009)
|
94. |
Dopaminergic cell bursting model (Kuznetsov et al 2006)
|
95. |
Duration-tuned neurons from the inferior colliculus of vertebrates (Aubie et al. 2012)
|
96. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
97. |
Effects of Dopamine Modulation and KIR Inactivation in NAc Medium Spiny Neurons (Steephen 2011)
|
98. |
Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
|
99. |
Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
|
100. |
Effects of neural morphology on global and focal NMDA-spikes (Poleg-Polsky 2015)
|
101. |
Effects of spinal cord stimulation on WDR dorsal horn network (Zhang et al 2014)
|
102. |
Efficient simulation environment for modeling large-scale cortical processing (Richert et al. 2011)
|
103. |
Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014)
|
104. |
Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011)
|
105. |
Emergent properties of networks of biological signaling pathways (Bhalla, Iyengar 1999)
|
106. |
Encoding and retrieval in a model of the hippocampal CA1 microcircuit (Cutsuridis et al. 2009)
|
107. |
Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016)
|
108. |
Excitability of DA neurons and their regulation by synaptic input (Morozova et al. 2016a, 2016b)
|
109. |
Excitatory synaptic interactions in pyramidal neuron dendrites (Behabadi et al. 2012)
|
110. |
Excitotoxic loss of dopaminergic cells in PD (Muddapu et al 2019)
|
111. |
Functional consequences of cortical circuit abnormalities on gamma in schizophrenia (Spencer 2009)
|
112. |
Gamma genesis in the basolateral amygdala (Feng et al 2019)
|
113. |
Gating of steering signals through phasic modulation of reticulospinal neurons (Kozlov et al. 2014)
|
114. |
Global and multiplexed dendritic computations under in vivo-like conditions (Ujfalussy et al 2018)
|
115. |
Glutamate mediated dendritic and somatic plateau potentials in cortical L5 pyr cells (Gao et al '20)
|
116. |
Granule Cells of the Olfactory Bulb (Simoes_De_Souza et al. 2014)
|
117. |
Heterosynaptic Spike-Timing-Dependent Plasticity (Hiratani & Fukai 2017)
|
118. |
Hierarchical network model of perceptual decision making (Wimmer et al 2015)
|
119. |
High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)
|
120. |
Hippocampal CA1 microcircuit model including somatic and dendritic inhibition
|
121. |
Hippocampal CA3 thorny and a-thorny principal neuron models (Linaro et al in review)
|
122. |
Hotspots of dendritic spine turnover facilitates new spines and NN sparsity (Frank et al 2018)
|
123. |
Human L5 Cortical Circuit (Guet-McCreight)
|
124. |
Human layer 2/3 cortical microcircuits in health and depression (Yao et al, 2022)
|
125. |
Human tactile FA1 neurons (Hay and Pruszynski 2020)
|
126. |
Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
|
127. |
In silico hippocampal modeling for multi-target pharmacotherapy in schizophrenia (Sherif et al 2020)
|
128. |
In vivo imaging of dentate gyrus mossy cells in behaving mice (Danielson et al 2017)
|
129. |
Interacting synaptic conductances during, distorting, voltage clamp (Poleg-Polsky and Diamond 2011)
|
130. |
Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007)
|
131. |
Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
|
132. |
Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
|
133. |
Kinetic NMDA receptor model (Kampa et al 2004)
|
134. |
Kinetic synaptic models applicable to building networks (Destexhe et al 1998)
|
135. |
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
|
136. |
L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
|
137. |
L5 PFC pyramidal neurons (Papoutsi et al. 2017)
|
138. |
Large scale model of the olfactory bulb (Yu et al., 2013)
|
139. |
Large scale neocortical model for PGENESIS (Crone et al 2019)
|
140. |
Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)
|
141. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
142. |
Leaky Integrate and Fire Neuron Model of Context Integration (Calvin, Redish 2021)
|
143. |
Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014)
|
144. |
Levodopa-Induced Toxicity in Parkinson's Disease (Muddapu et al, 2022)
|
145. |
Linear vs non-linear integration in CA1 oblique dendrites (Gómez González et al. 2011)
|
146. |
Locus Coeruleus blocking model (Chowdhury et al.)
|
147. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
148. |
Long-Term Inactivation of Na+ Channels as a Mech of Adaptation in CA1 Pyr Cells (Upchurch et al '22)
|
149. |
Look-Up Table Synapse (LUTsyn) models for AMPA and NMDA (Pham et al., 2021)
|
150. |
LTP in cerebellar mossy fiber-granule cell synapses (Saftenku 2002)
|
151. |
Mathematical model for windup (Aguiar et al. 2010)
|
152. |
Maximal firing rate in midbrain dopamine neurons (Knowlton et al., 2021)
|
153. |
MEC layer II stellate cell: Synaptic mechanisms of grid cells (Schmidt-Hieber & Hausser 2013)
|
154. |
Mechanisms underlying subunit independence in pyramidal neuron dendrites (Behabadi and Mel 2014)
|
155. |
Medial vestibular neuron models (Quadroni and Knopfel 1994)
|
156. |
MEG of Somatosensory Neocortex (Jones et al. 2007)
|
157. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
158. |
Midbrain dopamine neuron: firing patterns (Canavier 1999)
|
159. |
Mirror Neuron (Antunes et al 2017)
|
160. |
Model for K-ATP mediated bursting in mSNc DA neurons (Knowlton et al 2018)
|
161. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
162. |
Model of the Xenopus tadpole swimming spinal network (Roberts et al. 2014)
|
163. |
Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
|
164. |
Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014)
|
165. |
Motor system model with reinforcement learning drives virtual arm (Dura-Bernal et al 2017)
|
166. |
Multiplication by NMDA receptors in Direction Selective Ganglion cells (Poleg-Polsky & Diamond 2016)
|
167. |
Multiscale interactions between chemical and electric signaling in LTP (Bhalla 2011)
|
168. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
169. |
MyFirstNEURON (Houweling, Sejnowski 1997)
|
170. |
Network bursts in cultured NN result from different adaptive mechanisms (Masquelier & Deco 2013)
|
171. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
172. |
Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011)
|
173. |
Neural mass model of spindle generation in the isolated thalamus (Schellenberger Costa et al. 2016)
|
174. |
Neural mass model of the sleeping thalamocortical system (Schellenberger Costa et al 2016)
|
175. |
Nigral dopaminergic neurons: effects of ethanol on Ih (Migliore et al. 2008)
|
176. |
NMDA receptor saturation (Chen et al 2001)
|
177. |
NMDA receptors enhance the fidelity of synaptic integration (Li and Gulledge 2021)
|
178. |
NMDA spikes in basal dendrites of L5 pyramidal neurons (Polsky et al. 2009)
|
179. |
NMDAR & GABAB/KIR Give Bistable Dendrites: Working Memory & Sequence Readout (Sanders et al., 2013)
|
180. |
Nonlinear dendritic processing in barrel cortex spiny stellate neurons (Lavzin et al. 2012)
|
181. |
Normal ripples, abnormal ripples, and fast ripples in a hippocampal model (Fink et al. 2015)
|
182. |
Olfactory bulb granule cell: effects of odor deprivation (Saghatelyan et al 2005)
|
183. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
184. |
Olfactory bulb mitral and granule cell column formation (Migliore et al. 2007)
|
185. |
Olfactory bulb mitral and granule cell: dendrodendritic microcircuits (Migliore and Shepherd 2008)
|
186. |
Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
|
187. |
Olfactory Bulb Network (Davison et al 2003)
|
188. |
Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)
|
189. |
Orientation preference in L23 V1 pyramidal neurons (Park et al 2019)
|
190. |
Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)
|
191. |
Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
|
192. |
Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005)
|
193. |
Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012)
|
194. |
Pyramidal neuron conductances state and STDP (Delgado et al. 2010)
|
195. |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
|
196. |
Rat LGN Thalamocortical Neuron (Connelly et al 2015, 2016)
|
197. |
Reconstructing cerebellar granule layer evoked LFP using convolution (ReConv) (Diwakar et al. 2011)
|
198. |
Regulation of the firing pattern in dopamine neurons (Komendantov et al 2004)
|
199. |
Reinforcement learning of targeted movement (Chadderdon et al. 2012)
|
200. |
Ribbon Synapse (Sikora et al 2005)
|
201. |
Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)
|
202. |
Roles of essential kinases in induction of late hippocampal LTP (Smolen et al., 2006)
|
203. |
SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018)
|
204. |
Self-influencing synaptic plasticity (Tamosiunaite et al. 2007)
|
205. |
Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013)
|
206. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
207. |
Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
|
208. |
Short Term Depression, Presynaptic Inhib., Neuron Diversity Roles in Antennal Lobe (Wei & Lo 2020)
|
209. |
Short term plasticity at the cerebellar granule cell (Nieus et al. 2006)
|
210. |
Simulations of modulation of HCN channels in L5PCs (Mäki-Marttunen and Mäki-Marttunen, 2022)
|
211. |
Single compartment Dorsal Lateral Medium Spiny Neuron w/ NMDA and AMPA (Biddell and Johnson 2013)
|
212. |
Single compartment: nonlinear a5-GABAAR controls synaptic NMDAR activation (Schulz et al 2018)
|
213. |
Single-cell comprehensive biophysical model of SN pars compacta (Muddapu & Chakravarthy 2021)
|
214. |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
|
215. |
Spatial coupling tunes NMDA receptor responses via Ca2+ diffusion (Iacobucci and Popescu 2019)
|
216. |
Spatial summation of excitatory and inhibitory inputs in pyramidal neurons (Hao et al. 2010)
|
217. |
Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017)
|
218. |
Spiking GridPlaceMap model (Pilly & Grossberg, PLoS One, 2013)
|
219. |
Spine fusion and branching affects synaptic response (Rusakov et al 1996, 1997)
|
220. |
Spine neck plasticity controls postsynaptic calcium signals (Grunditz et al. 2008)
|
221. |
STDP and BDNF in CA1 spines (Solinas et al. 2019)
|
222. |
STDP and NMDAR Subunits (Gerkin et al. 2007)
|
223. |
STDP depends on dendritic synapse location (Letzkus et al. 2006)
|
224. |
Stoney vs Histed: Quantifying spatial effects of intracortical microstims (Kumaravelu et al 2022)
|
225. |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
|
226. |
Striatal GABAergic microcircuit, dopamine-modulated cell assemblies (Humphries et al. 2009)
|
227. |
Striatal GABAergic microcircuit, spatial scales of dynamics (Humphries et al, 2010)
|
228. |
Striatal Spiny Projection Neuron (SPN) plasticity rule (Jedrzejewska-Szmek et al 2016)
|
229. |
Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)
|
230. |
Striatum D1 Striosome and Matrix Upstates (Prager et al., 2020)
|
231. |
Structure-dynamics relationships in bursting neuronal networks revealed (Mäki-Marttunen et al. 2013)
|
232. |
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
|
233. |
Syn Plasticity Regulation + Information Processing in Neuron-Astrocyte Networks (Vuillaume et al 21)
|
234. |
Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)
|
235. |
Synaptic integration in a model of granule cells (Gabbiani et al 1994)
|
236. |
Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)
|
237. |
Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013)
|
238. |
Synaptic vesicle fusion model (Church et al 2021)
|
239. |
Synchronicity of fast-spiking interneurons balances medium-spiny neurons (Damodaran et al. 2014)
|
240. |
Synchrony by synapse location (McTavish et al. 2012)
|
241. |
Thalamic network model of deep brain stimulation in essential tremor (Birdno et al. 2012)
|
242. |
The APP in C-terminal domain alters CA1 neuron firing (Pousinha et al 2019)
|
243. |
The origin of different spike and wave-like events (Hall et al 2017)
|
244. |
Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
|
245. |
Tonic activation of extrasynaptic NMDA-R promotes bistability (Gall & Dupont 2020)
|
246. |
Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
|
247. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
248. |
Visual Cortex Neurons: Dendritic study (Anderson et al 1999)
|
249. |
VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
|