Models that contain the Neurotransmitter : Acetylcholine

Re-display model names without descriptions
    Models   Description
1.  A basal ganglia model of aberrant learning (Ursino et al. 2018)
A comprehensive, biologically inspired neurocomputational model of action selection in the Basal Ganglia allows simulation of dopamine induced aberrant learning in Parkinsonian subjects. In particular, the model simulates the Alternate Finger Tapping motor task as an indicator of bradykinesia.
2.  A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
This is a two-layer biophysical olfactory bulb (OB) network model to study cholinergic neuromodulation. Simulations show that nicotinic receptor activation sharpens mitral cell receptive field, while muscarinic receptor activation enhances network synchrony and gamma oscillations. This general model suggests that the roles of nicotinic and muscarinic receptors in OB are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.
3.  A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
We present a unified model of the thalamus that is capable of independently generating multiple distinct oscillations (delta, spindle, alpha and gamma oscillations) under different levels of acetylcholine (ACh) and norepinephrine (NE) modulation corresponding to different physiological conditions (deep sleep, light sleep, relaxed wakefulness and attention). The model also shows that entrainment of thalamic oscillations is state-dependent.
4.  Acetylcholine-modulated plasticity in reward-driven navigation (Zannone et al 2018)
"Neuromodulation plays a fundamental role in the acquisition of new behaviours. In previous experimental work, we showed that acetylcholine biases hippocampal synaptic plasticity towards depression, and the subsequent application of dopamine can retroactively convert depression into potentiation. We also demonstrated that incorporating this sequentially neuromodulated Spike- Timing-Dependent Plasticity (STDP) rule in a network model of navigation yields effective learning of changing reward locations. Here, we employ computational modelling to further characterize the effects of cholinergic depression on behaviour. We find that acetylcholine, by allowing learning from negative outcomes, enhances exploration over the action space. We show that this results in a variety of effects, depending on the structure of the model, the environment and the task. Interestingly, sequentially neuromodulated STDP also yields flexible learning, surpassing the performance of other reward-modulated plasticity rules."
5.  ACh modulation in olfactory bulb and piriform cortex (de Almeida et al. 2013;Devore S, et al. 2014)
This matlab code was used in the papers de Almeida, Idiart and Linster, (2013), Devore S, de Almeida L, Linster C (2014) . This work uses a computational model of the OB and PC and their common cholinergic inputs to investigate how bulbar cholinergic modulation affects cortical odor processing.
6.  Application of a common kinetic formalism for synaptic models (Destexhe et al 1994)
Application to AMPA, NMDA, GABAA, and GABAB receptors is given in a book chapter. The reference paper synthesizes a comprehensive general description of synaptic transmission with Markov kinetic models. This framework is applicable to modeling ion channels, synaptic release, and all receptors. Please see the references for more details. A simple introduction to this method is given in a seperate paper Destexhe et al Neural Comput 6:14-18 , 1994). More information and papers at and through email:
7.  Basal Ganglia and Levodopa Pharmacodynamics model for parameter estimation in PD (Ursino et al 2020)
Parkinson disease (PD) is characterized by a clear beneficial motor response to levodopa (LD) treatment. However, with disease progression and longer LD exposure, drug-related motor fluctuations usually occur. Recognition of the individual relationship between LD concentration and its effect may be difficult, due to the complexity and variability of the mechanisms involved. This work proposes an innovative procedure for the automatic estimation of LD pharmacokinetics and pharmacodynamics parameters, by a biologically-inspired mathematical model. An original issue, compared with previous similar studies, is that the model comprises not only a compartmental description of LD pharmacokinetics in plasma and its effect on the striatal neurons, but also a neurocomputational model of basal ganglia action selection. Parameter estimation was achieved on 26 patients (13 with stable and 13 with fluctuating LD response) to mimic plasma LD concentration and alternate finger tapping frequency along four hours after LD administration, automatically minimizing a cost function of the difference between simulated and clinical data points. Results show that individual data can be satisfactorily simulated in all patients and that significant differences exist in the estimated parameters between the two groups. Specifically, the drug removal rate from the effect compartment, and the Hill coefficient of the concentration-effect relationship were significantly higher in the fluctuating than in the stable group. The model, with individualized parameters, may be used to reach a deeper comprehension of the PD mechanisms, mimic the effect of medication, and, based on the predicted neural responses, plan the correct management and design innovative therapeutic procedures.
8.  Biochemically detailed model of LTP and LTD in a cortical spine (Maki-Marttunen et al 2020)
"Signalling pathways leading to post-synaptic plasticity have been examined in many types of experimental studies, but a unified picture on how multiple biochemical pathways collectively shape neocortical plasticity is missing. We built a biochemically detailed model of post-synaptic plasticity describing CaMKII, PKA, and PKC pathways and their contribution to synaptic potentiation or depression. We developed a statistical AMPA-receptor-tetramer model, which permits the estimation of the AMPA-receptor-mediated maximal synaptic conductance based on numbers of GluR1s and GluR2s predicted by the biochemical signalling model. We show that our model reproduces neuromodulator-gated spike-timing-dependent plasticity as observed in the visual cortex and can be fit to data from many cortical areas, uncovering the biochemical contributions of the pathways pinpointed by the underlying experimental studies. Our model explains the dependence of different forms of plasticity on the availability of different proteins and can be used for the study of mental disorder-associated impairments of cortical plasticity."
9.  Cardiac Atrial Cell (Courtemanche et al 1998) (C++)
The mechanisms underlying many important properties of the human atrial action potential (AP) are poorly understood. Using specific formulations of the K+, Na+, and Ca2+ currents based on data recorded from human atrial myocytes, along with representations of pump, exchange, and background currents, we developed a mathematical model of the AP. The model AP resembles APs recorded from human atrial samples and responds to rate changes, L-type Ca2+ current blockade, Na+/Ca2+ exchanger inhibition, and variations in transient outward current amplitude in a fashion similar to experimental recordings. Rate-dependent adaptation of AP duration, an important determinant of susceptibility to atrial fibrillation, was attributable to incomplete L-type Ca2+ current recovery from inactivation and incomplete delayed rectifier current deactivation at rapid rates. Experimental observations of variable AP morphology could be accounted for by changes in transient outward current density, as suggested experimentally. We conclude that this mathematical model of the human atrial AP reproduces a variety of observed AP behaviors and provides insights into the mechanisms of clinically important AP properties.
10.  Cholinergic and nicotinic regulation of DA neuron firing (Morozova et al 2020)
The model describes the modulation of firing properties of DA neurons by acetylcholine (ACh) and nicotine in 5 cases: knock-out of ß2-containing nAChRs, ß2-containing nAChRs only on DA neurons, the nAChRs only on GABA neurons, the nAChRs on both DA and GABA neurons and “wild” type (the AChRs on DA, GABA and Glu neurons). The distinct responses to ACh and nicotine could be explained by distinct temporal patterns of these inputs: pulsatile vs. continuous.
11.  Competition model of pheromone ratio detection (Zavada et al. 2011)
For some closely related sympatric moth species, recognizing a specific pheromone component concentration ratio is essential for mating success. We propose and test a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which. (3) longer durations of the competition process between LNs did not result in higher recognition accuracy.
12.  Cortical pyramidal neuron, phase response curve (Stiefel et al 2009)
Three models of increasing complexity all showing a switch from type II (biphasic) to type I (monophasic) phase response curves with a cholinergic down-modulation of K+ conductances.
13.  Crayfish hybrid experimental model (Chung et al. 2015)
The Crayfish hybrid experimental model is an AnimatLab v1 neuromechanical model of the crayfish thorax and 5th walking leg that provides a virtual periphery to the live crayfish central nervous system. Run in real time, levator and depressor muscles are excited by motor nerve discharges of the CNS. Up and down movement of the leg shortens and stretches a model stretch receptor that controls movement of a real stretch receptor that provides sensory feedback to the CNS. Real-time sensory feedback provided by the model increases the locomotor cycle frequency by three-fold.
14.  Crayfish hybrid simulation model (Bacque-Cazenave et al. 2014)
A neuromechanical model of the crayfish leg and thorax and the postural and locomotor circuitry built and run in AnimatLab v1. The model simulates experiments run with the BCI preparation model in which the model was linked in real time to the in vivo crayfish thoracic nerve cord. The model shows that current understanding of the neural circuitry can account for the increase in locomotor frequency when the sensori-motor feedback loop is intact.
15.  Generating oscillatory bursts from a network of regular spiking neurons (Shao et al. 2009)
Avian nucleus isthmi pars parvocellularis (Ipc) neurons are reciprocally connected with the tectal layer 10 (L10) neurons and respond with oscillatory bursts to visual stimulation. To elucidate mechanisms of oscillatory bursting in this network of regularly spiking neurons, we investigated an experimentally constrained model of coupled leaky integrate-and-fire neurons with spike-rate adaptation. The model reproduces the observed Ipc oscillatory bursting in response to simulated visual stimulation.
16.  Hippocampal CA1 pyramidal cell demonstrating dynamic mode switching (Berteau & Bullock 2020)
A simulated proposed single-cell mechanism for CA1’s behavior as an associative mismatch detector. Shifts in spiking mode (accomplished via KCNQ interaction with chloride leak currents) signal matches vs. mismatches.
17.  LGMD Variability and logarithmic compression in dendrites (Jones and Gabbiani, 2012, 2012B)
A compartmental model of the LGMD with a simplified, rake shaped, excitatory dendrite. It receives spontaneous input and excitatory and inhibitory synaptic inputs triggered by visual stimuli. It generates realistic responses to looming through the velocity dependent scaling and delay of individual excitatory synaptic inputs, with variability. We use the model to show that the key determinants of output variability are spontaneous input and temporal jitter of the excitatory inputs, rather than variability in magnitude of individual inputs (2012B, J Neurophysiol). We also use the model to analyze the transformation of the excitatory signals through the visual pathway; concluding that the representation of stimulus velocity is transformed from an expansive relationship at the level of the LGMD inputs to a logarithmic one at the level of its membrane potential (2012, J Neurosci).
18.  Library of biophysically detailed striatal projection neurons (Lindroos and Hellgren Kotaleski 2020)
Library of compartmentalized models used to investigate dendritic integration in striatal projection neurons under neuromodulation.
19.  Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
This pyloric network model simulator is a C/C++ program that saves 384 different calcium sensor values that are candidates for activity sensors (Gunay and Prinz, 2010). The simulator was used to scan all of the 20 million pyloric network models that were previously collected in a database (Prinz et al, 2004).
20.  Locust olfactory network with GGN and full KC population in the mushroom body (Ray et al 2020)
We reconstructed the GGN (giant GABAergic neuron) morphology from 3D confocal image stack, and built a passive model based on the morphology to study signal attenuation across this giant neuron. In order to study the effect of feedback inhibition from this cell on odor information processing, we created a model of the olfactory network in the locust mushroom body with 50,000 KCs (Kenyon cell) reciprocally connected to this neuron. Finally, we added a model of the IG (Inhibitor of GGN) to reproduce in vivo odor responses in GGN.
21.  Model of the hippocampus over the sleep-wake cycle using Hodgkin-Huxley neurons (Aussel et al 2018)
" ...we propose a computational model of the hippocampal formation based on a realistic topology and synaptic connectivity, and we analyze the effect of different changes on the network, namely the variation of synaptic conductances, the variations of the CAN channel conductance and the variation of inputs. By using a detailed simulation of intracerebral recordings, we show that this is able to reproduce both the theta-nested gamma oscillations that are seen in awake brains and the sharp-wave ripple complexes measured during slow-wave sleep. The results of our simulations support the idea that the functional connectivity of the hippocampus, modulated by the sleep-wake variations in Acetylcholine concentration, is a key factor in controlling its rhythms."
22.  Multiplication by NMDA receptors in Direction Selective Ganglion cells (Poleg-Polsky & Diamond 2016)
The model demonstrates how signal amplification with NMDARs depends on the synaptic environment. When direction selectivity (DS) detection is mediated by DS inhibition, NMDARs multiply other synaptic conductances. In the case of DS tuned excitation, NMDARs contribute additively.
23.  Neural mass model of the neocortex under sleep regulation (Costa et al 2016)
This model generates typical human EEG patterns of sleep stages N2/N3 as well as wakefulness and REM. It further contains a sleep regulatory component, that lets the model transition between those stages independently
24.  Nicotinic control of dopamine release in nucleus accumbens (Maex et al. 2014)
Minimal model of the VTA (ventral segmental area) representing two (GABA versus dopamine) neuron populations and two subtypes of nicotinic receptors (alpha4beta2 versus alpha7). The model is used to tell apart circuit from receptor mechanisms in the nicotinic control of dopamine release and its pharmacological manipulation.
25.  Optimal synaptic assignment for locomotory behavior in C. elegans (Rakowski & Karbowski 2017)
"The detailed knowledge of C. elegans connectome for 3 decades has not contributed dramatically to our understanding of worm’s behavior. One of main reasons for this situation has been the lack of data on the type of synaptic signaling between particular neurons in the worm’s connectome. The aim of this study was to determine synaptic polarities for each connection in a small pre-motor circuit controlling locomotion. Even in this compact network of just 7 neurons the space of all possible patterns of connection types (excitation vs. inhibition) is huge. To deal effectively with this combinatorial problem we devised a novel and relatively fast technique based on genetic algorithms and large-scale parallel computations, which we combined with detailed neurophysiological modeling of interneuron dynamics and compared the theory to the available behavioral data. As a result of these massive computations, we found that the optimal connectivity pattern that matches the best locomotory data is the one in which all interneuron connections are inhibitory, even those terminating on motor neurons. ..."
26.  Pancreatic Beta Cell signalling pathways (Fridlyand & Philipson 2016) (MATLAB)
This is a 3rd party implementation of Fridlyand & Philipson 2016 who's abstract begins "Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. ..."
27.  Parallel cortical inhibition processing enables context-dependent behavior (Kuchibhotla et al. 2016)
Physical features of sensory stimuli are fixed, but sensory perception is context dependent. The precise mechanisms that govern contextual modulation remain unknown. Here, we trained mice to switch between two contexts: passively listening to pure tones and performing a recognition task for the same stimuli. Two-photon imaging showed that many excitatory neurons in auditory cortex were suppressed during behavior, while some cells became more active. Whole-cell recordings showed that excitatory inputs were affected only modestly by context, but inhibition was more sensitive, with PV+, SOM+, and VIP+ interneurons balancing inhibition and disinhibition within the network. Cholinergic modulation was involved in context switching, with cholinergic axons increasing activity during behavior and directly depolarizing inhibitory cells. Network modeling captured these findings, but only when modulation coincidently drove all three interneuron subtypes, ruling out either inhibition or disinhibition alone as sole mechanism for active engagement. Parallel processing of cholinergic modulation by cortical interneurons therefore enables context-dependent behavior.
28.  Phasic ACh promotes gamma oscillations in E-I networks (Lu et al, 2020)
In a biophysically-based model, we show that a network of excitatory (E) and inhibitory (I) neurons that initially displays asynchronous firing can generate transient gamma oscillatory activity in response to simulated brief pulses of ACh. ACh effects are simulated as transient modulation of the conductance of an M-type K+ current which is blocked by activation of muscarinic receptors and has significant effects on neuronal excitability. The ACh-induced effects on the M current conductance, gks, change network dynamics to promote the emergence of network gamma rhythmicity through a Pyramidal-Interneuronal Network Gamma (PING) mechanism.
29.  Phosphoinositide-Dependent Signaling in Sympathetic Neurons (SCG) (Kruse et al. 2016)
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor phospholipid in the cytoplasmic leaflet of the plasma membrane. Depletion of PI(4,5)P2 via phospholipase C-mediated hydrolysis leads to a decrease in exocytosis and alters electrical excitability in neurons. Restoration of PI(4,5)P2 is essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We studied the dynamics of phosphoinositide metabolism in sympathetic neu- rons upon muscarinic stimulation and used the kinetic information to develop a quantitative description of neuronal phospho- inositide metabolism. The measurements and analysis show a several-fold faster synthesis of PI(4,5)P2 in sympathetic neurons than in an electrically nonexcitable cell line, and provide a framework for future studies of PI(4,5)P2-dependent processes in neurons.
30.  Quantitative model of sleep-wake dynamics (Phillips & Robinson 2007)
"A quantitative, physiology-based model of the ascending arousal system is developed, using continuum neuronal population modeling, which involves averaging properties such as firing rates across neurons in each population. The model includes the ventrolateral preoptic area (VLPO), where circadian and homeostatic drives enter the system, the monoaminergic and cholinergic nuclei of the ascending arousal system, and their interconnections. The human sleep-wake cycle is governed by the activities of these nuclei, which modulate the behavioral state of the brain via diffuse neuromodulatory projections. ... The model behavior is robust across the constrained parameter ranges, but with sufficient flexibility to describe a wide range of observed phenomena. "
31.  Reconstrucing sleep dynamics with data assimilation (Sedigh-Sarvestani et al., 2012)
We have developed a framework, based on the unscented Kalman filter, for estimating hidden states and parameters of a network model of sleep. The network model includes firing rates and neurotransmitter output of 5 cell-groups in the rat brain.
32.  Role for short term plasticity and OLM cells in containing spread of excitation (Hummos et al 2014)
This hippocampus model was developed by matching experimental data, including neuronal behavior, synaptic current dynamics, network spatial connectivity patterns, and short-term synaptic plasticity. Furthermore, it was constrained to perform pattern completion and separation under the effects of acetylcholine. The model was then used to investigate the role of short-term synaptic depression at the recurrent synapses in CA3, and inhibition by basket cell (BC) interneurons and oriens lacunosum-moleculare (OLM) interneurons in containing the unstable spread of excitatory activity in the network.
33.  Sequential neuromodulation of Hebbian plasticity in reward-based navigation (Brzosko et al 2017)
" ...Here, we demonstrate that sequential neuromodulation of STDP by acetylcholine and dopamine offers an efficacious model of reward-based navigation. Specifically, our experimental data in mouse hippocampal slices show that acetylcholine biases STDP toward synaptic depression, whilst subsequent application of dopamine converts this depression into potentiation. Incorporating this bidirectional neuromodulation-enabled correlational synaptic learning rule into a computational model yields effective navigation toward changing reward locations, as in natural foraging behavior. ..."
34.  Short Term Depression, Presynaptic Inhib., Neuron Diversity Roles in Antennal Lobe (Wei & Lo 2020)
35.  Signaling pathways In D1R containing striatal spiny projection neurons (Blackwell et al 2018)
We implemented a mechanistic model of signaling pathways activated by dopamine D1 receptors, acetylcholine receptors, and glutamate. We use our novel, computationally efficient simulator, NeuroRD, to simulate stochastic interactions both within and between dendritic spines. Results show that the combined activity of several key plasticity molecules correctly predicts the occurrence of either LTP, LTD or no plasticity for numerous experimental protocols.
36.  Thalamocortical model of spike and wave seizures (Suffczynski et al. 2004)
SIMULINK macroscopic model of transitions between normal (spindle) activity and spike and wave (SW) discharges in the thalamocortical network. The model exhibits bistability properties and stochastic fluctuations present in the network may flip the system between the two operational states. The predictions of the model were compared with real EEG data in rats and humans. A possibility to abort an ictal state by a single counter stimulus is suggested by the model.
37.  Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
"... The present study concerns a neurobiologically based computational model of the emergence of theta phase precession in which the responses of a single model CA3 pyramidal cell are examined in the context of stimulation by realistic afferent spike trains including those of place cells in entorhinal cortex, dentate gyrus, and other CA3 pyramidal cells. Spike-timing dependent plasticity in the model CA3 pyramidal cell leads to a spatially correlated associational synaptic drive that subsequently creates a spatially asymmetric expansion of the model cell’s place field. ... Through selective manipulations of the model it is possible to decompose theta phase precession in CA3 into the separate contributing factors of inheritance from upstream afferents in the dentate gyrus and entorhinal cortex, the interaction of synaptically controlled increasing afferent drive with phasic inhibition, and the theta phase difference between dentate gyrus granule cell and CA3 pyramidal cell activity."
38.  Vertical System (VS) tangential cells network model (Trousdale et al. 2014)
Network model of the VS tangential cell system, with 10 cells per hemisphere. Each cell is a two compartment model with one compartment for dendrites and one for the axon. The cells are coupled through axonal gap junctions. The code allows to simulate responses of the VS network to a variety of visual stimuli to investigate coding as a function of gap junction strength.

Re-display model names without descriptions