| Models |
1. |
2D model of olfactory bulb gamma oscillations (Li and Cleland 2017)
|
2. |
3D model of the olfactory bulb (Migliore et al. 2014)
|
3. |
3D olfactory bulb: operators (Migliore et al, 2015)
|
4. |
A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
|
5. |
A dendritic disinhibitory circuit mechanism for pathway-specific gating (Yang et al. 2016)
|
6. |
A detailed data-driven network model of prefrontal cortex (Hass et al 2016)
|
7. |
A focal seizure model with ion concentration changes (Gentiletti et al., 2022)
|
8. |
A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
|
9. |
A model for focal seizure onset, propagation, evolution, and progression (Liou et al 2020)
|
10. |
A Moth MGC Model-A HH network with quantitative rate reduction (Buckley & Nowotny 2011)
|
11. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
12. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (CellML)
|
13. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (SBML)
|
14. |
A neuronal circuit simulator for non Monte Carlo analysis of neuronal noise (Kilinc & Demir 2018)
|
15. |
A NN with synaptic depression for testing the effects of connectivity on dynamics (Jacob et al 2019)
|
16. |
A sensorimotor-spinal cord model (Hoshino et al. 2022)
|
17. |
A simple integrative electrophysiological model of bursting GnRH neurons (Csercsik et al. 2011)
|
18. |
A single column thalamocortical network model (Traub et al 2005)
|
19. |
A two networks model of connectivity-dependent oscillatory activity (Avella OJ et al. 2014)
|
20. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
21. |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
|
22. |
ACnet23 primary auditory cortex model (Beeman et al 2019)
|
23. |
Active dendritic integration in robust and precise grid cell firing (Schmidt-Hieber et al 2017)
|
24. |
Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005)
|
25. |
An attractor network model of grid cells and theta-nested gamma oscillations (Pastoll et al 2013)
|
26. |
AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
|
27. |
Application of a common kinetic formalism for synaptic models (Destexhe et al 1994)
|
28. |
Ave. neuron model for slow-wave sleep in cortex Tatsuki 2016 Yoshida 2018 Rasmussen 2017 (all et al)
|
29. |
Axonal subthreshold voltage signaling along hippocampal mossy fiber (Kamiya 2022)
|
30. |
Basket cell extrasynaptic inhibition modulates network oscillations (Proddutur et al., 2013)
|
31. |
Biologically Constrained Basal Ganglia model (BCBG model) (Lienard, Girard 2014)
|
32. |
Biophysical modeling of pathological brain states (Sudhakar et al 2019)
|
33. |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
|
34. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
35. |
CA1 network model for place cell dynamics (Turi et al 2019)
|
36. |
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2020)
|
37. |
CA1 oriens alveus interneurons: signaling properties (Minneci et al. 2007)
|
38. |
CA1 pyramidal cells, basket cells, ripples (Malerba et al 2016)
|
39. |
CA1 pyramidal neuron synaptic integration (Bloss et al. 2016)
|
40. |
CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)
|
41. |
CA1 pyramidal neuron: depolarization block (Bianchi et al. 2012)
|
42. |
CA1 pyramidal neuron: nonlinear a5-GABAAR controls synaptic NMDAR activation (Schulz et al 2018)
|
43. |
CA1 pyramidal neuron: rebound spiking (Ascoli et al.2010)
|
44. |
CA3 Network Model of Epileptic Activity (Sanjay et. al, 2015)
|
45. |
Calcium influx during striatal upstates (Evans et al. 2013)
|
46. |
Cell-type specific integration of feedforward and feedback synaptic inputs (Ridner et al, 2022)
|
47. |
Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)
|
48. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
49. |
Cerebellar Model for the Optokinetic Response (Kim and Lim 2021)
|
50. |
Cerebellar nuclear neuron (Sudhakar et al., 2015)
|
51. |
Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
|
52. |
Cerebellum granule cell FHF (Dover et al. 2016)
|
53. |
Cl- homeostasis in immature hippocampal CA3 neurons (Kolbaev et al 2020)
|
54. |
Coding of stimulus frequency by latency in thalamic networks (Golomb et al 2005)
|
55. |
Coincident glutamatergic depolarization effects on Cl- dynamics (Lombardi et al, 2021)
|
56. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
57. |
Comparison of full and reduced globus pallidus models (Hendrickson 2010)
|
58. |
Compartmentalization of GABAergic inhibition by dendritic spines (Chiu et al. 2013)
|
59. |
Competition model of pheromone ratio detection (Zavada et al. 2011)
|
60. |
Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
|
61. |
Computational analysis of NN activity and spatial reach of sharp wave-ripples (Canakci et al 2017)
|
62. |
Computational modeling of gephyrin-dependent inhibitory transsynaptic signaling (Lupascu et al 2020)
|
63. |
Computer model of clonazepam's effect in thalamic slice (Lytton 1997)
|
64. |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
|
65. |
Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020)
|
66. |
Cortical Interneuron & Pyramidal Cell Model of Cortical Spreading Depression (Stein & Harris 2022)
|
67. |
Cortical model with reinforcement learning drives realistic virtual arm (Dura-Bernal et al 2015)
|
68. |
Cortical network model of posttraumatic epileptogenesis (Bush et al 1999)
|
69. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
70. |
DBS of a multi-compartment model of subthalamic nucleus projection neurons (Miocinovic et al. 2006)
|
71. |
Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
|
72. |
Decorrelation in the developing visual thalamus (Tikidji-Hamburyan et al, accepted)
|
73. |
Default mode network model (Matsui et al 2014)
|
74. |
Dendritic action potentials and computation in human layer 2/3 cortical neurons (Gidon et al 2020)
|
75. |
Dentate Basket Cell: spatial summation of inhibitory synaptic inputs (Bartos et al 2001)
|
76. |
Dentate Gyrus Feed-forward inhibition (Ferrante et al. 2009)
|
77. |
Dentate Gyrus model including Granule cells with dendritic compartments (Chavlis et al 2017)
|
78. |
Dentate gyrus network model (Santhakumar et al 2005)
|
79. |
Dentate gyrus network model pattern separation and granule cell scaling in epilepsy (Yim et al 2015)
|
80. |
DG adult-born granule cell: nonlinear a5-GABAARs control AP firing (Lodge et al, 2021)
|
81. |
Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)
|
82. |
Distal inhibitory control of sensory-evoked excitation (Egger, Schmitt et al. 2015)
|
83. |
Distance-dependent inhibition in the hippocampus (Strüber et al. 2017)
|
84. |
Distinct integration properties of noisy inputs in active dendritic subunits (Poleg-Polsky 2019)
|
85. |
Dopamine-modulated medium spiny neuron, reduced model (Humphries et al. 2009)
|
86. |
Duration-tuned neurons from the inferior colliculus of the big brown bat (Aubie et al. 2009)
|
87. |
Duration-tuned neurons from the inferior colliculus of vertebrates (Aubie et al. 2012)
|
88. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
89. |
Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005)
|
90. |
Effects of Chloride accumulation and diffusion on GABAergic transmission (Jedlicka et al 2011)
|
91. |
Effects of Dopamine Modulation and KIR Inactivation in NAc Medium Spiny Neurons (Steephen 2011)
|
92. |
Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
|
93. |
Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
|
94. |
Effects of spinal cord stimulation on WDR dorsal horn network (Zhang et al 2014)
|
95. |
Effects of the membrane AHP on the Lateral Superior Olive (LSO) (Zhou & Colburn 2010)
|
96. |
Efficient Method for Computing Synaptic Conductance (Destexhe et al 1994)
|
97. |
Efficient simulation environment for modeling large-scale cortical processing (Richert et al. 2011)
|
98. |
Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014)
|
99. |
Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011)
|
100. |
Encoding and retrieval in a model of the hippocampal CA1 microcircuit (Cutsuridis et al. 2009)
|
101. |
Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009)
|
102. |
Excitability of DA neurons and their regulation by synaptic input (Morozova et al. 2016a, 2016b)
|
103. |
Excitotoxic loss of dopaminergic cells in PD (Muddapu et al 2019)
|
104. |
Factors contribution to GDP-induced [Cl-]i transients (Lombardi et al 2019)
|
105. |
Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
|
106. |
Feedforward heteroassociative network with HH dynamics (Lytton 1998)
|
107. |
Fluctuating synaptic conductances recreate in-vivo-like activity (Destexhe et al 2001)
|
108. |
FS Striatal interneuron: K currents solve signal-to-noise problems (Kotaleski et al 2006)
|
109. |
Functional consequences of cortical circuit abnormalities on gamma in schizophrenia (Spencer 2009)
|
110. |
Gamma and theta rythms in biophysical models of hippocampus circuits (Kopell et al. 2011)
|
111. |
Gamma genesis in the basolateral amygdala (Feng et al 2019)
|
112. |
Gamma oscillations in hippocampal interneuron networks (Bartos et al 2002)
|
113. |
Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996)
|
114. |
Gamma-beta alternation in the olfactory bulb (David, Fourcaud-Trocmé et al., 2015)
|
115. |
Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010)
|
116. |
H-currents effect on the fluctuation of gamma/beta oscillations (Avella-Gonzalez et al., 2015)
|
117. |
Heterosynaptic Spike-Timing-Dependent Plasticity (Hiratani & Fukai 2017)
|
118. |
Hierarchical network model of perceptual decision making (Wimmer et al 2015)
|
119. |
High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)
|
120. |
Hippocampal CA1 microcircuit model including somatic and dendritic inhibition
|
121. |
Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
|
122. |
Hippocampal CA1 pyramidal cell demonstrating dynamic mode switching (Berteau & Bullock 2020)
|
123. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
124. |
Hippocampus temporo-septal engram shift model (Lytton 1999)
|
125. |
Homeostatic mechanisms may shape oscillatory modulations (Peterson & Voytek 2020)
|
126. |
Hopfield and Brody model (Hopfield, Brody 2000)
|
127. |
Human L5 Cortical Circuit (Guet-McCreight)
|
128. |
Human layer 2/3 cortical microcircuits in health and depression (Yao et al, 2022)
|
129. |
Hybrid oscillatory interference / continuous attractor NN of grid cell firing (Bush & Burgess 2014)
|
130. |
I&F recurrent networks with current- or conductance-based synapses (Cavallari et al. 2014)
|
131. |
Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
|
132. |
In vivo imaging of dentate gyrus mossy cells in behaving mice (Danielson et al 2017)
|
133. |
Information trans. through Entopeduncular nucleus modified by synaptic plasticity (Gorodetsky et al)
|
134. |
Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
|
135. |
Initiation of spreading depolarization by GABAergic neuron hyperactivity & NaV 1.1 (Chever et al 21)
|
136. |
Interacting synaptic conductances during, distorting, voltage clamp (Poleg-Polsky and Diamond 2011)
|
137. |
Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007)
|
138. |
Inverse stochastic resonance of cerebellar Purkinje cell (Buchin et al. 2016)
|
139. |
Ionic mechanisms of bursting in CA3 pyramidal neurons (Xu and Clancy 2008)
|
140. |
Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
|
141. |
Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
|
142. |
Kinetic synaptic models applicable to building networks (Destexhe et al 1998)
|
143. |
KInNeSS : a modular framework for computational neuroscience (Versace et al. 2008)
|
144. |
Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
|
145. |
L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
|
146. |
L5 PFC pyramidal neurons (Papoutsi et al. 2017)
|
147. |
Large cortex model with map-based neurons (Rulkov et al 2004)
|
148. |
Large scale model of the olfactory bulb (Yu et al., 2013)
|
149. |
Large scale neocortical model for PGENESIS (Crone et al 2019)
|
150. |
Large-scale model of neocortical slice in vitro exhibiting persistent gamma (Tomsett et al. 2014)
|
151. |
Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
|
152. |
Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)
|
153. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
154. |
LCN-HippoModel: model of CA1 PCs deep-superficial theta firing dynamics (Navas-Olive et al 2020)
|
155. |
Leaky Integrate and Fire Neuron Model of Context Integration (Calvin, Redish 2021)
|
156. |
Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014)
|
157. |
Learning spatial transformations through STDP (Davison, Frégnac 2006)
|
158. |
Levodopa-Induced Toxicity in Parkinson's Disease (Muddapu et al, 2022)
|
159. |
LFP in striatum (Tanaka & Nakamura 2019)
|
160. |
LGMD Variability and logarithmic compression in dendrites (Jones and Gabbiani, 2012, 2012B)
|
161. |
LIP and FEF rhythmic attention model (Aussel et al. 2023)
|
162. |
Locus Coeruleus blocking model (Chowdhury et al.)
|
163. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
164. |
Mathematical model for windup (Aguiar et al. 2010)
|
165. |
Mauthner cell with two pre-synaptic cells, an inhibitory and an excitatory cell (Orr et al 2021)
|
166. |
MEC layer II stellate cell: Synaptic mechanisms of grid cells (Schmidt-Hieber & Hausser 2013)
|
167. |
MEC PV-positive fast-spiking interneuron network generates theta-nested fast oscillations
|
168. |
MEG of Somatosensory Neocortex (Jones et al. 2007)
|
169. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
170. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
171. |
Model of the hippocampus over the sleep-wake cycle using Hodgkin-Huxley neurons (Aussel et al 2018)
|
172. |
Model of the Xenopus tadpole swimming spinal network (Roberts et al. 2014)
|
173. |
Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
|
174. |
Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)
|
175. |
Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014)
|
176. |
Motor system model with reinforcement learning drives virtual arm (Dura-Bernal et al 2017)
|
177. |
Multiplication by NMDA receptors in Direction Selective Ganglion cells (Poleg-Polsky & Diamond 2016)
|
178. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
179. |
Multiscale model of primary motor cortex circuits predicts in vivo dynamics (Dura-Bernal et al 2023)
|
180. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
181. |
MyFirstNEURON (Houweling, Sejnowski 1997)
|
182. |
Na channel mutations in the dentate gyrus (Thomas et al. 2009)
|
183. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
184. |
Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
|
185. |
Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011)
|
186. |
Neural mass model of spindle generation in the isolated thalamus (Schellenberger Costa et al. 2016)
|
187. |
Neural mass model of the neocortex under sleep regulation (Costa et al 2016)
|
188. |
Neural mass model of the sleeping cortex (Weigenand et al 2014)
|
189. |
Neural mass model of the sleeping thalamocortical system (Schellenberger Costa et al 2016)
|
190. |
Nigral dopaminergic neurons: effects of ethanol on Ih (Migliore et al. 2008)
|
191. |
NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
|
192. |
NMDAR & GABAB/KIR Give Bistable Dendrites: Working Memory & Sequence Readout (Sanders et al., 2013)
|
193. |
Nonlinear dendritic processing in barrel cortex spiny stellate neurons (Lavzin et al. 2012)
|
194. |
Normal ripples, abnormal ripples, and fast ripples in a hippocampal model (Fink et al. 2015)
|
195. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
196. |
Olfactory bulb mitral and granule cell column formation (Migliore et al. 2007)
|
197. |
Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
|
198. |
Olfactory Bulb Network (Davison et al 2003)
|
199. |
Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)
|
200. |
Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)
|
201. |
Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007)
|
202. |
Orientation preference in L23 V1 pyramidal neurons (Park et al 2019)
|
203. |
Paired turbulence and light effect on calcium increase in Hermissenda (Blackwell 2004)
|
204. |
Pallidostriatal projections promote beta oscillations (Corbit, Whalen, et al 2016)
|
205. |
Paradoxical GABA-mediated excitation (Lewin et al. 2012)
|
206. |
Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)
|
207. |
Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
|
208. |
Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)
|
209. |
Patterns of synchronization in 2D networks of inhibitory neurons (Miller et al, 2022)
|
210. |
Perceptual judgments via sensory-motor interaction assisted by cortical GABA (Hoshino et al 2018)
|
211. |
Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005)
|
212. |
Pipette and membrane patch geometry effects on GABAa currents patch-clamp exps (Moroni et al. 2011)
|
213. |
Population models of temporal differentiation (Tripp and Eliasmith 2010)
|
214. |
Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012)
|
215. |
Proximal inhibition of Renshaw cells (Bui et al 2005)
|
216. |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
|
217. |
Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001)
|
218. |
Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
|
219. |
Reconstructing cerebellar granule layer evoked LFP using convolution (ReConv) (Diwakar et al. 2011)
|
220. |
Reducing variability in motor cortex activity by GABA (Hoshino et al. 2019)
|
221. |
Regulation of the firing pattern in dopamine neurons (Komendantov et al 2004)
|
222. |
Reinforcement learning of targeted movement (Chadderdon et al. 2012)
|
223. |
Respiratory central pattern generator (mammalian brainstem) (Rubin & Smith 2019)
|
224. |
Respiratory central pattern generator including Kolliker-Fuse nucleus (Wittman et al 2019)
|
225. |
Respiratory central pattern generator network in mammalian brainstem (Rubin et al. 2009)
|
226. |
Response to correlated synaptic input for HH/IF point neuron vs with dendrite (Górski et al 2018)
|
227. |
Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)
|
228. |
SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018)
|
229. |
Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013)
|
230. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
231. |
Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
|
232. |
Short Term Depression, Presynaptic Inhib., Neuron Diversity Roles in Antennal Lobe (Wei & Lo 2020)
|
233. |
Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014)
|
234. |
Simulations of modulation of HCN channels in L5PCs (Mäki-Marttunen and Mäki-Marttunen, 2022)
|
235. |
Simulations of oscillations in piriform cortex (Wilson & Bower 1992)
|
236. |
Single compartment: nonlinear a5-GABAAR controls synaptic NMDAR activation (Schulz et al 2018)
|
237. |
Single E-I oscillating network with amplitude modulation (Avella Gonzalez et al. 2012)
|
238. |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
|
239. |
Spatial constrains of GABAergic rheobase shift (Lombardi et al., 2021)
|
240. |
Spatial summation of excitatory and inhibitory inputs in pyramidal neurons (Hao et al. 2010)
|
241. |
Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017)
|
242. |
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
|
243. |
Spike frequency adaptation in the LGMD (Peron and Gabbiani 2009)
|
244. |
Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007)
|
245. |
Spiking GridPlaceMap model (Pilly & Grossberg, PLoS One, 2013)
|
246. |
Spiny Projection Neuron Ca2+ based plasticity is robust to in vivo spike train (Dorman&Blackwell)
|
247. |
State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013)
|
248. |
Status epilepticus alters dentate basket cell tonic inhibition (Yu J et al 2013)
|
249. |
STDP promotes synchrony of inhibitory networks in the presence of heterogeneity (Talathi et al 2008)
|
250. |
Steady-state Vm distribution of neurons subject to synaptic noise (Rudolph, Destexhe 2005)
|
251. |
Stoney vs Histed: Quantifying spatial effects of intracortical microstims (Kumaravelu et al 2022)
|
252. |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
|
253. |
Striatal GABAergic microcircuit, dopamine-modulated cell assemblies (Humphries et al. 2009)
|
254. |
Striatal GABAergic microcircuit, spatial scales of dynamics (Humphries et al, 2010)
|
255. |
Striatal NN model of MSNs and FSIs investigated effects of dopamine depletion (Damodaran et al 2015)
|
256. |
Striatal Spiny Projection Neuron (SPN) plasticity rule (Jedrzejewska-Szmek et al 2016)
|
257. |
Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)
|
258. |
Striatum D1 Striosome and Matrix Upstates (Prager et al., 2020)
|
259. |
Structure-dynamics relationships in bursting neuronal networks revealed (Mäki-Marttunen et al. 2013)
|
260. |
Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
|
261. |
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
|
262. |
Surround Suppression in V1 via Withdraw of Balanced Local Excitation in V1 (Shushruth 2012)
|
263. |
Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
|
264. |
Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)
|
265. |
Synaptic integration in a model of granule cells (Gabbiani et al 1994)
|
266. |
Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)
|
267. |
Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013)
|
268. |
Synchronicity of fast-spiking interneurons balances medium-spiny neurons (Damodaran et al. 2014)
|
269. |
Synchrony by synapse location (McTavish et al. 2012)
|
270. |
Synthesis of spatial tuning functions from theta cell spike trains (Welday et al., 2011)
|
271. |
Temporal integration by stochastic recurrent network (Okamoto et al. 2007)
|
272. |
Thalamic network model of deep brain stimulation in essential tremor (Birdno et al. 2012)
|
273. |
Thalamic neuron, zebra finch DLM: Integration of pallidal and cortical inputs (Goldberg et al. 2012)
|
274. |
Thalamic quiescence of spike and wave seizures (Lytton et al 1997)
|
275. |
Thalamic Reticular Network (Destexhe et al 1994)
|
276. |
Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
|
277. |
Thalamocortical loop with delay for investigation of absence epilepsy (Liu et al 2019)
|
278. |
Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
|
279. |
Thalamocortical augmenting response (Bazhenov et al 1998)
|
280. |
Thalamocortical control of propofol phase-amplitude coupling (Soplata et al 2017)
|
281. |
Thalamocortical model of spike and wave seizures (Suffczynski et al. 2004)
|
282. |
The origin of different spike and wave-like events (Hall et al 2017)
|
283. |
Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
|
284. |
Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit (Ponzi et al. 2023)
|
285. |
Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
|
286. |
Two populations of excitatory neurons in the superficial retrosplenial cortex (Brennan et al 2020)
|
287. |
Two-neuron conductance-based model with dynamic ion concentrations to study NaV1.1 channel mutations
|
288. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
289. |
Vertical System (VS) tangential cells network model (Trousdale et al. 2014)
|
290. |
VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
|