Models that contain the Neurotransmitter : Glycine

Re-display model names without descriptions
    Models   Description
1.  Application of a common kinetic formalism for synaptic models (Destexhe et al 1994)
Application to AMPA, NMDA, GABAA, and GABAB receptors is given in a book chapter. The reference paper synthesizes a comprehensive general description of synaptic transmission with Markov kinetic models. This framework is applicable to modeling ion channels, synaptic release, and all receptors. Please see the references for more details. A simple introduction to this method is given in a seperate paper Destexhe et al Neural Comput 6:14-18 , 1994). More information and papers at http://cns.iaf.cnrs-gif.fr/Main.html and through email: Destexhe@iaf.cnrs-gif.fr
2.  Frog second-order vestibular neuron models (Rossert et al. 2011)
This implements spiking Hodgkin-Huxley type models of tonic and phasic second-order vestibular neurons. Models fitted to intracellular spike and membrane potential recordings from frog (Rana temporaria). The models can be stimulated by intracellular step current, frequency current (ZAP) or synaptic stimulation.
3.  Respiratory central pattern generator including Kolliker-Fuse nucleus (Wittman et al 2019)
We present three highly reduced conductance-based models for the core of the respiratory CPG. All successfully simulate respiratory outputs across eupnoeic and vagotomized conditions and show that loss of inhibition to the pontine Kolliker-Fuse nucleus reproduces the key respiratory alterations associated with Rett syndrome.
4.  Superior paraolivary nucleus neuron (Kopp-Scheinpflug et al. 2011)
This is a model of neurons in the brainstem superior paraolivary nucleus (SPN), which produce very salient offset firing during sound stimulation. Rebound offset firing is triggered by IPSPs coming from the medial nucleus of the trapezoid body (MNTB). This model shows that AP firing can emerge from inhibition through integration of large IPSPs, driven by an extremely negative chloride reversal potential, combined with a large hyperpolarization- activated non-specific cationic current (IH), with a secondary contribution from a T-type calcium conductance (ITCa). As a result, tiny gaps in sound stimuli of just 3-4ms can elicit reliable APs that signal such brief offsets.

Re-display model names without descriptions