Models that contain the Gene Name : KCa1.1 KCNMA1

("MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the control of smooth muscle tone and neuronal excitability. MaxiK channels can be formed by 2 subunits: the pore-forming alpha subunit, which is the product of this gene, and the modulatory beta subunit. Intracellular calcium regulates the physical association between the alpha and beta subunits. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]")
Re-display model names without descriptions
    Models   Description
1.  A detailed Purkinje cell model (Masoli et al 2015)
The Purkinje cell is one of the most complex type of neuron in the central nervous system and is well known for its massive dendritic tree. The initiation of the action potential was theorized to be due to the high calcium channels presence in the dendritic tree but, in the last years, this idea was revised. In fact, the Axon Initial Segment, the first section of the axon was seen to be critical for the spontaneous generation of action potentials. The model reproduces the behaviours linked to the presence of this fundamental sections and the interplay with the other parts of the neuron.
2.  GC model (Beining et al 2017)
A companion modeldb entry (NEURON only) to modeldb accession number 231862.
3.  Mature and young adult-born dentate granule cell models (T2N interface) (Beining et al. 2017)
... Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies. We illustrate this for a novel, highly-detailed active model of dentate granule cells (GCs) replicating a wide palette of experiments from various labs. By implementing known differences in ion channel composition and morphology, our model reproduces data from mouse or rat, mature or adult-born GCs as well as pharmacological interventions and epileptic conditions. ... T2N is suitable for creating robust models useful for large-scale networks that could lead to novel predictions. ..." See modeldb accession number 231818 for NEURON only code.

Re-display model names without descriptions