Models that contain the Model Concept : Respiratory control

(Neural and or metabolic feedback systems that control the rate of respiration.)
Re-display model names without descriptions
    Models   Description
1.  Respiratory central pattern generator (mammalian brainstem) (Rubin & Smith 2019)
This model includes a conditional respiratory pacemaker unit (representing the pre-Botzinger Complex), which can be tuned across oscillatory and non-oscillatory dynamic regimes in isolation, embedded into a full respiratory network. The work shows that under this embedding, the pacemaker unit's dynamics become masked: the network exhibits similar dynamical properties regardless of the conditional pacemaker node's tuning, and that node's outputs are dominated by network influences.
2.  Respiratory central pattern generator including Kolliker-Fuse nucleus (Wittman et al 2019)
We present three highly reduced conductance-based models for the core of the respiratory CPG. All successfully simulate respiratory outputs across eupnoeic and vagotomized conditions and show that loss of inhibition to the pontine Kolliker-Fuse nucleus reproduces the key respiratory alterations associated with Rett syndrome.
3.  Respiratory control model with brainstem CPG and sensory feedback (Diekman, Thomas, and Wilson 2017)
This is a closed-loop respiratory control model incorporating a central pattern generator (CPG), the Butera-Rinzel-Smith (BRS) model, together with lung mechanics, oxygen handling, and chemosensory components. The closed-loop system exhibits bistability of bursting and tonic spiking. Bursting corresponds to coexistence of eupnea-like breathing, with normal minute ventilation and blood oxygen level. Tonic spiking corresponds to a tachypnea-like state, with pathologically reduced minute ventilation and critically low blood oxygen. In our paper, we use the closed-loop system to demonstrate robustness to changes in metabolic demand, spontaneous autoresuscitation in response to hypoxia, and the distinct mechanisms that underlie rhythmogenesis in the intact control circuit vs. the isolated, open-loop CPG.

Re-display model names without descriptions