Models that contain the Receptor : Ion Receptors

Re-display model names without descriptions
    Models   Description
1.  A mathematical model of a neurovascular unit (Dormanns et al 2015, 2016) (Farrs & David 2011)
Here a lumped parameter numerical model of a neurovascular unit is presented, representing an intercellular communication system based on ion exchange through pumps and channels between neurons, astrocytes, smooth muscle cells, endothelial cells, and the spaces between these cells: the synaptic cleft between the neuron and astrocyte, the perivascular space between the astrocyte and SMC, and the extracellular space surrounding the cells. The model contains various cellular and chemical pathways such as potassium, astrocytic calcium, and nitric oxide. The model is able to simulate neurovascular coupling, the process characterised by an increase in neuronal activity followed by a rapid dilation of local blood vessels and hence increased blood supply providing oxygen and glucose to cells in need.
2.  A multiphysics neuron model for cellular volume dynamics (Lee et al. 2011)
This paper introduces a novel neuron model, where the cell volume is a time-varying variable and multiple physical principles are combined to build governing equations. Using this model, we analyzed neuronal volume responses during excitation, which elucidated the waveforms of fast intrinsic optical signals observed experimentally across the literature. In addition, we analyzed volume responses on a longer time scale with repetitive stimulation to study the characteristics of slow cell swelling.
3.  Application of a common kinetic formalism for synaptic models (Destexhe et al 1994)
Application to AMPA, NMDA, GABAA, and GABAB receptors is given in a book chapter. The reference paper synthesizes a comprehensive general description of synaptic transmission with Markov kinetic models. This framework is applicable to modeling ion channels, synaptic release, and all receptors. Please see the references for more details. A simple introduction to this method is given in a seperate paper Destexhe et al Neural Comput 6:14-18 , 1994). More information and papers at http://cns.iaf.cnrs-gif.fr/Main.html and through email: Destexhe@iaf.cnrs-gif.fr

Re-display model names without descriptions