| Models |
1. |
A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
|
2. |
A detailed Purkinje cell model (Masoli et al 2015)
|
3. |
A dynamic model of the canine ventricular myocyte (Hund, Rudy 2004)
|
4. |
A Fast Rhythmic Bursting Cell: in vivo cell modeling (Lee 2007)
|
5. |
A focal seizure model with ion concentration changes (Gentiletti et al., accepted)
|
6. |
A kinetic model unifying presynaptic short-term facilitation and depression (Lee et al. 2009)
|
7. |
A Markov model of human Cav2.3 channels and their modulation by Zn2+ (Neumaier et al 2020)
|
8. |
A mathematical model of a neurovascular unit (Dormanns et al 2015, 2016) (Farrs & David 2011)
|
9. |
A mathematical model of evoked calcium dynamics in astrocytes (Handy et al 2017)
|
10. |
A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
|
11. |
A model for a nociceptor terminal and terminal tree (Barkai et al., 2020)
|
12. |
A model of closed-loop motor unit including muscle spindle feedback (Kim, 2020)
|
13. |
A Model of Multiple Spike Initiation Zones in the Leech C-interneuron (Crisp 2009)
|
14. |
A model of slow motor unit (Kim, 2017)
|
15. |
A model of the T-junction of a C-fiber sensory neuron (Sundt et al. 2015)
|
16. |
A modified Morris-Lecar with TRPC4 & GIRK (Tian et al. 2022)
|
17. |
A Moth MGC Model-A HH network with quantitative rate reduction (Buckley & Nowotny 2011)
|
18. |
A multi-compartment model for interneurons in the dLGN (Halnes et al. 2011)
|
19. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
20. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (CellML)
|
21. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (SBML)
|
22. |
A network model of tail withdrawal in Aplysia (White et al 1993)
|
23. |
A network of AOB mitral cells that produces infra-slow bursting (Zylbertal et al. 2017)
|
24. |
A phantom bursting mechanism for episodic bursting (Bertram et al 2008)
|
25. |
A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012)
|
26. |
A simplified cerebellar Purkinje neuron (the PPR model) (Brown et al. 2011)
|
27. |
A single column thalamocortical network model (Traub et al 2005)
|
28. |
A synapse model for developing somatosensory cortex (Manninen et al 2020)
|
29. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
30. |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
|
31. |
Action Potential initiation and backpropagation in Neocortical L5 Pyramidal Neuron (Hu et al. 2009)
|
32. |
Action potential of mouse urinary bladder smooth muscle (Mahapatra et al 2018)
|
33. |
Action potential reconstitution from measured current waveforms (Alle et al. 2009)
|
34. |
Actions of Rotenone on ionic currents and MEPPs in Mouse Hippocampal Neurons (Huang et al 2018)
|
35. |
Active dendrites shape signaling microdomains in hippocampal neurons (Basak & Narayanan 2018)
|
36. |
Activity constraints on stable neuronal or network parameters (Olypher and Calabrese 2007)
|
37. |
Activity dependent changes in motoneurones (Dai Y et al 2002, Gardiner et al 2002)
|
38. |
Activity dependent conductances in a neuron model (Liu et al. 1998)
|
39. |
Activity patterns in a subthalamopallidal network of the basal ganglia model (Terman et al 2002)
|
40. |
Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005)
|
41. |
Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
|
42. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
|
43. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
|
44. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
|
45. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
|
46. |
Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
|
47. |
Allen Institute: Nr5a1-Cre VISp layer 4 329322394
|
48. |
Allen Institute: Nr5a1-Cre VISp layer 4 472306544
|
49. |
Allen Institute: Nr5a1-Cre VISp layer 4 472442377
|
50. |
Allen Institute: Nr5a1-Cre VISp layer 4 472451419
|
51. |
Allen Institute: Nr5a1-Cre VISp layer 4 472915634
|
52. |
Allen Institute: Nr5a1-Cre VISp layer 4 473834758
|
53. |
Allen Institute: Nr5a1-Cre VISp layer 4 473863035
|
54. |
Allen Institute: Nr5a1-Cre VISp layer 4 473871429
|
55. |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904
|
56. |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
|
57. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
|
58. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
|
59. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
|
60. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
|
61. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
|
62. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
|
63. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
|
64. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
|
65. |
Allen Institute: Rbp4-Cre VISp layer 5 472424854
|
66. |
Allen Institute: Rbp4-Cre VISp layer 6a 473871592
|
67. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
|
68. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
|
69. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
|
70. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
|
71. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
|
72. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
|
73. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
|
74. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
|
75. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
|
76. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
|
77. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
|
78. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
|
79. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
|
80. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
|
81. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
|
82. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
|
83. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
|
84. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
|
85. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
|
86. |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
|
87. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
|
88. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
|
89. |
Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
|
90. |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
|
91. |
Alpha rhythm in vitro visual cortex (Traub et al 2020)
|
92. |
Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)
|
93. |
Amyloid-beta effects on release probability and integration at CA3-CA1 synapses (Romani et al. 2013)
|
94. |
An allosteric kinetics of NMDARs in STDP (Urakubo et al. 2008)
|
95. |
An ion-based model for swelling of neurons and astrocytes (Hubel & Ullah 2016)
|
96. |
AOB mitral cell: persistent activity without feedback (Zylbertal et al., 2015)
|
97. |
AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
|
98. |
Apical Length Governs Computational Diversity of Layer 5 Pyramidal Neurons (Galloni et al 2020)
|
99. |
Availability of low-threshold Ca2+ current in retinal ganglion cells (Lee SC et al. 2003)
|
100. |
Ave. neuron model for slow-wave sleep in cortex Tatsuki 2016 Yoshida 2018 Rasmussen 2017 (all et al)
|
101. |
Axon-somatic back-propagation in a detailed model of cat spinal motoneuron (Balbi et al, 2015)
|
102. |
Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
|
103. |
Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)
|
104. |
Axonal Projection and Interneuron Types (Helmstaedter et al. 2008)
|
105. |
Axonal subthreshold voltage signaling along hippocampal mossy fiber (Kamiya 2022)
|
106. |
Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2012)
|
107. |
Biochemically detailed model of LTP and LTD in a cortical spine (Maki-Marttunen et al 2020)
|
108. |
Biophysical and phenomenological models of spike-timing dependent plasticity (Badoual et al. 2006)
|
109. |
Biophysical models of AWCon and RMD C. elegans neurons (M. Nicoletti at al. 2019)
|
110. |
Biophysically detailed model of the mouse sino-atrial node cell (Kharche et al. 2011)
|
111. |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
|
112. |
BK - CaV coupling (Montefusco et al. 2017)
|
113. |
Boundary effects influence velocity in transverse propagation of cardiac APs (Sperelakis et al 2005)
|
114. |
Burst and tonic firing behaviour in subfornical organ (SFO) neurons (Medlock et al 2018)
|
115. |
Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
|
116. |
Bursting activity of neuron R15 in Aplysia (Canavier et al 1991, Butera et al 1995)
|
117. |
Bursting and resonance in cerebellar granule cells (D'Angelo et al. 2001)
|
118. |
Ca(2+) oscillations based on Ca-induced Ca-release (Dupont et al 1991)
|
119. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
120. |
CA1 network model for place cell dynamics (Turi et al 2019)
|
121. |
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2019)
|
122. |
CA1 pyramidal cell: reconstructed axonal arbor and failures at weak gap junctions (Vladimirov 2011)
|
123. |
CA1 pyramidal neuron (Combe et al 2018)
|
124. |
CA1 pyramidal neuron to study INaP properties and repetitive firing (Uebachs et al. 2010)
|
125. |
CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)
|
126. |
CA1 pyramidal neuron: dendritic Ca2+ inhibition (Muellner et al. 2015)
|
127. |
CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)
|
128. |
CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013)
|
129. |
CA1 pyramidal neuron: functional significance of axonal Kv7 channels (Shah et al. 2008)
|
130. |
CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)
|
131. |
CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)
|
132. |
Ca2+ Oscillations in Sympathetic neurons (Friel 1995)
|
133. |
CA3 hippocampal pyramidal neuron with voltage-clamp intrinsic conductance data (Traub et al 1991)
|
134. |
CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994)
|
135. |
CA3 pyramidal neuron (Lazarewicz et al 2002)
|
136. |
CA3 Pyramidal Neuron (Migliore et al 1995)
|
137. |
CA3 pyramidal neuron (Safiulina et al. 2010)
|
138. |
CA3 pyramidal neuron: firing properties (Hemond et al. 2008)
|
139. |
Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011)
|
140. |
Calcium dynamics depend on dendritic diameters (Anwar et al. 2014)
|
141. |
Calcium influx during striatal upstates (Evans et al. 2013)
|
142. |
Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
|
143. |
Calcium spikes in basal dendrites (Kampa and Stuart 2006)
|
144. |
Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
|
145. |
Cardiac action potentials and pacemaker activity of sinoatrial node (DiFrancesco & Noble 1985)
|
146. |
Cardiac Atrial Cell (Courtemanche et al 1998)
|
147. |
Cardiac Atrial Cell (Courtemanche et al 1998) (C++)
|
148. |
Cardiac models of circadian rhythms in early afterdepolarizations & arrhythmias (Diekman & Wei 2021)
|
149. |
Cell signaling/ion channel variability effects on neuronal response (Anderson, Makadia, et al. 2015)
|
150. |
Cell-type specific integration of feedforward and feedback synaptic inputs (Ridner et al, accepted)
|
151. |
Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)
|
152. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
153. |
Cerebellar granule cell (Masoli et al 2020)
|
154. |
Cerebellar nuclear neuron (Sudhakar et al., 2015)
|
155. |
Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
|
156. |
Cerebellar purkinje cell (De Schutter and Bower 1994)
|
157. |
Cerebellar purkinje cell: interacting Kv3 and Na currents influence firing (Akemann, Knopfel 2006)
|
158. |
Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001)
|
159. |
Cerebellar Purkinje Cell: resurgent Na current and high frequency firing (Khaliq et al 2003)
|
160. |
Cerebellum granule cell FHF (Dover et al. 2016)
|
161. |
Cerebellum Purkinje cell: dendritic ion channels activated by climbing fibre (Ait Ouares et al 2019)
|
162. |
Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
|
163. |
Channel density variability among CA1 neurons (Migliore et al. 2018)
|
164. |
Cholinergic and nicotinic regulation of DA neuron firing (Morozova et al 2020)
|
165. |
Circadian rhythmicity shapes astrocyte morphology and neuronal function in CA1 (McCauley et al 2020)
|
166. |
CN bushy, stellate neurons (Rothman, Manis 2003)
|
167. |
CN bushy, stellate neurons (Rothman, Manis 2003) (Brian 2)
|
168. |
CN bushy, stellate neurons (Rothman, Manis 2003) (Brian)
|
169. |
Coincident signals in Olfactory Bulb Granule Cell spines (Aghvami et al 2019)
|
170. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
171. |
Comparison of full and reduced globus pallidus models (Hendrickson 2010)
|
172. |
Compartmentalization of GABAergic inhibition by dendritic spines (Chiu et al. 2013)
|
173. |
Competing oscillator 5-cell circuit and Parameterscape plotting (Gutierrez et al. 2013)
|
174. |
Complex CA1-neuron to study AP initiation (Wimmer et al. 2010)
|
175. |
Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018)
|
176. |
Computational modeling of ultrasonic Subthalamic Nucleus stimulation (Tarnaud et al 2019)
|
177. |
Computer model of clonazepam's effect in thalamic slice (Lytton 1997)
|
178. |
Computer models of corticospinal neurons replicate in vitro dynamics (Neymotin et al. 2017)
|
179. |
Computer simulations of neuron-glia interactions mediated by ion flux (Somjen et al. 2008)
|
180. |
Conductance-based model of rodent thoracic sympathetic postganglionic neuron (McKinnon et al 2019)
|
181. |
Contrast invariance by LGN synaptic depression (Banitt et al. 2007)
|
182. |
Control of oscillations and spontaneous firing in dopamine neurons (Rumbell & Kozloski 2019)
|
183. |
Controlling KCa channels with different Ca2+ buffering models in Purkinje cell (Anwar et al. 2012)
|
184. |
Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)
|
185. |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
|
186. |
Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020)
|
187. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
188. |
D2 dopamine receptor modulation of interneuronal activity (Maurice et al. 2004)
|
189. |
Data-driven, HH-type model of the lateral pyloric (LP) cell in the STG (Nowotny et al. 2008)
|
190. |
DBS of a multi-compartment model of subthalamic nucleus projection neurons (Miocinovic et al. 2006)
|
191. |
Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
|
192. |
Dendritic L-type Ca currents in motoneurons (Carlin et al 2000)
|
193. |
Dendritic Na+ spike initiation and backpropagation of APs in active dendrites (Nevian et al. 2007)
|
194. |
Dendritic processing of excitatory synaptic input in GnRH neurons (Roberts et al. 2006)
|
195. |
Dendritic properties control energy efficiency of APs in cortical pyramidal cells (Yi et al 2017)
|
196. |
Dendritic signals command firing dynamics in a Cerebellar Purkinje Cell model (Genet et al. 2010)
|
197. |
Dendritic spine geometry, spine apparatus organization: spatiotemporal Ca dynamics (Bell et al 2019)
|
198. |
Dendritica (Vetter et al 2001)
|
199. |
Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
|
200. |
Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999)
|
201. |
Dentate gyrus network model (Santhakumar et al 2005)
|
202. |
Dentate gyrus network model (Tejada et al 2014)
|
203. |
Depolarization Enhacement of Dendritic Spike Propagation (Bock et al 2022)
|
204. |
Determinants of the intracellular and extracellular waveforms in DA neurons (Lopez-Jury et al 2018)
|
205. |
Deterministic chaos in a mathematical model of a snail neuron (Komendantov and Kononenko 1996)
|
206. |
Differences between type A and B photoreceptors (Blackwell 2006)
|
207. |
Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)
|
208. |
Discharge hysteresis in motoneurons (Powers & Heckman 2015)
|
209. |
Discrimination on behavioral time-scales mediated by reaction-diffusion in dendrites (Bhalla 2017)
|
210. |
Disentangling astroglial physiology with a realistic cell model in silico (Savtchenko et al 2018)
|
211. |
Dopamine neuron of the vent. periaqu. gray and dors. raphe nucleus (vlPAG/DRN) (Dougalis et al 2017)
|
212. |
Dopaminergic cell bursting model (Kuznetsov et al 2006)
|
213. |
Dopaminergic subtantia nigra neuron (Moubarak et al 2019)
|
214. |
Double cable myelinated axon (Layer 5 pyramidal neuron; Cohen et al 2020)
|
215. |
DRt neuron model (Sousa et al., 2014)
|
216. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
217. |
Dynamical assessment of ion channels during in vivo-like states (Guet-McCreight & Skinner 2020)
|
218. |
Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006)
|
219. |
Effect of voltage sensitive fluorescent proteins on neuronal excitability (Akemann et al. 2009)
|
220. |
Effects of Acetyl-L-carnitine on neural transmission (Lombardo et al 2004)
|
221. |
Effects of Dopamine Modulation and KIR Inactivation in NAc Medium Spiny Neurons (Steephen 2011)
|
222. |
Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
|
223. |
Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
|
224. |
Effects of neural morphology on global and focal NMDA-spikes (Poleg-Polsky 2015)
|
225. |
Electrically-coupled Retzius neurons (Vazquez et al. 2009)
|
226. |
Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
|
227. |
Elementary mechanisms producing facilitation of Cav2.1 (P/Q-type) channels
|
228. |
Emergent properties of networks of biological signaling pathways (Bhalla, Iyengar 1999)
|
229. |
Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016)
|
230. |
Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
|
231. |
Enhanced Excitability in Hermissenda: modulation by 5-HT (Cai et al 2003)
|
232. |
Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009)
|
233. |
ERG current in repolarizing plateau potentials in dopamine neurons (Canavier et al 2007)
|
234. |
Excitability of DA neurons and their regulation by synaptic input (Morozova et al. 2016a, 2016b)
|
235. |
Excitability of PFC Basal Dendrites (Acker and Antic 2009)
|
236. |
Excitation-contraction coupling in an integrative heart cell model (Greenstein et al 2006)
|
237. |
Excitation-contraction coupling/mitochondrial energetics (ECME) model (Cortassa et al. 2006)
|
238. |
External Tufted Cell Model (Ryan Viertel, Alla Borisyuk 2019)
|
239. |
Failure of Deep Brain Stimulation in a basal ganglia neuronal network model (Dovzhenok et al. 2013)
|
240. |
Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
|
241. |
FHF2KO and Wild-Type Mouse Cardiomyocyte Strands (Park et al 2020)
|
242. |
Firing neocortical layer V pyramidal neuron (Reetz et al. 2014; Stadler et al. 2014)
|
243. |
Frog second-order vestibular neuron models (Rossert et al. 2011)
|
244. |
Gamma genesis in the basolateral amygdala (Feng et al 2019)
|
245. |
GC model (Beining et al 2017)
|
246. |
Global structure, robustness, and modulation of neuronal models (Goldman et al. 2001)
|
247. |
Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008)
|
248. |
Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010)
|
249. |
GPi/GPe neuron models (Johnson and McIntyre 2008)
|
250. |
Half-center oscillator database of leech heart interneuron model (Doloc-Mihu & Calabrese 2011)
|
251. |
HH model neuron of the Suprachiasmatic Nucleus including a persistent Na+ channel (Paul et al 2016)
|
252. |
HH model of SCN neurons including a transient K+ channel (Bano-Otalora et al 2021)
|
253. |
High frequency stimulation of the Subthalamic Nucleus (Rubin and Terman 2004)
|
254. |
Hippocampal CA1 microcircuit model including somatic and dendritic inhibition
|
255. |
Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
|
256. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
257. |
Hippocampal CA3 thorny and a-thorny principal neuron models (Linaro et al in review)
|
258. |
Hodgkin-Huxley model of persistent activity in PFC neurons (Winograd et al. 2008) (NEURON python)
|
259. |
Hodgkin-Huxley model of persistent activity in prefrontal cortex neurons (Winograd et al. 2008)
|
260. |
Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)
|
261. |
Homeostatic mechanisms may shape oscillatory modulations (Peterson & Voytek 2020)
|
262. |
Homosynaptic plasticity in the tail withdrawal circuit (TWC) of Aplysia (Baxter and Byrne 2006)
|
263. |
How adaptation makes low firing rates robust (Sherman & Ha 2017)
|
264. |
Human Cortical L5 Pyramidal Cell (Rich et al. 2021)
|
265. |
Hyperexcitability from Nav1.2 channel loss in neocortical pyramidal cells (Spratt et al accepted)
|
266. |
Hypocretin and Locus Coeruleus model neurons (Carter et al 2012)
|
267. |
Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005)
|
268. |
IA and IT interact to set first spike latency (Molineux et al 2005)
|
269. |
Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)
|
270. |
Impact of dendritic size and topology on pyramidal cell burst firing (van Elburg and van Ooyen 2010)
|
271. |
Impedance spectrum in cortical tissue: implications for LFP signal propagation (Miceli et al. 2017)
|
272. |
Inferior Olive, subthreshold oscillations (Torben-Nielsen, Segev, Yarom 2012)
|
273. |
Influence of dendritic structure on neocortical neuron firing patterns (Mainen and Sejnowski 1996)
|
274. |
Information trans. through Entopeduncular nucleus modified by synaptic plasticity (Gorodetsky et al)
|
275. |
Infraslow intrinsic rhythmogenesis in a subset of AOB projection neurons (Gorin et al 2016)
|
276. |
Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
|
277. |
Interacting synaptic conductances during, distorting, voltage clamp (Poleg-Polsky and Diamond 2011)
|
278. |
Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007)
|
279. |
Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009)
|
280. |
Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007)
|
281. |
Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005)
|
282. |
Ionic mechanisms of bursting in CA3 pyramidal neurons (Xu and Clancy 2008)
|
283. |
Ionic mechanisms of dendritic spikes (Almog and Korngreen 2014)
|
284. |
Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
|
285. |
Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
|
286. |
Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
|
287. |
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
|
288. |
Kv4.3, Kv1.4 encoded K channel in heart cells & tachy. (Winslow et al 1999, Greenstein et al 2000)
|
289. |
L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
|
290. |
L5 PFC pyramidal neurons (Papoutsi et al. 2017)
|
291. |
L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011)
|
292. |
Large scale neocortical model for PGENESIS (Crone et al 2019)
|
293. |
Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
|
294. |
Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)
|
295. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
296. |
Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)
|
297. |
LCN-HippoModel: model of CA1 PCs deep-superficial theta firing dynamics (Navas-Olive et al 2020)
|
298. |
Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014)
|
299. |
Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)
|
300. |
Leech heart interneuron network model (Hill et al 2001, 2002)
|
301. |
Leech Mechanosensory Neurons: Synaptic Facilitation by Reflected APs (Baccus 1998)
|
302. |
Leech S Cell: Modulation of Excitability by Serotonin (Burrell and Crisp 2008)
|
303. |
Levodopa-Induced Toxicity in Parkinson's Disease (Muddapu et al, 2022)
|
304. |
LGMD - ON excitation to dendritic field C
|
305. |
LGMD Variability and logarithmic compression in dendrites (Jones and Gabbiani, 2012, 2012B)
|
306. |
LGMD with 3D morphology and active dendrites (Dewell & Gabbiani 2018)
|
307. |
Linear vs non-linear integration in CA1 oblique dendrites (Gómez González et al. 2011)
|
308. |
Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
|
309. |
Locational influence of dendritic PIC on input-output properties of spinal motoneurons (Kim 2017)
|
310. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
311. |
Long-Term Inactivation of Na+ Channels as a Mech of Adaptation in CA1 Pyr Cells (Upchurch et al '22)
|
312. |
Low dose of dopamine may stimulate prolactin secretion by increasing K currents (Tabak et al. 2006)
|
313. |
Low Threshold Calcium Currents in TC cells (Destexhe et al 1998)
|
314. |
Low Threshold Calcium Currents in TC cells (Destexhe et al 1998) (Brian)
|
315. |
M1 and M4 intrinsically photosensitive retinal ganglion cells (Stinchcombe et al. 2021)
|
316. |
Mammalian Ventricular Cell (Beeler and Reuter 1977)
|
317. |
Mathematical model for windup (Aguiar et al. 2010)
|
318. |
Mature and young adult-born dentate granule cell models (T2N interface) (Beining et al. 2017)
|
319. |
Mauthner cell with two pre-synaptic cells, an inhibitory and an excitatory cell (Orr et al 2021)
|
320. |
Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)
|
321. |
Medial vestibular neuron models (Quadroni and Knopfel 1994)
|
322. |
MEG of Somatosensory Neocortex (Jones et al. 2007)
|
323. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
324. |
Midbrain torus semicircularis neuron model (Aumentado-Armstrong et al. 2015)
|
325. |
Mirror Neuron (Antunes et al 2017)
|
326. |
Mixed mode oscillations as a mechanism for pseudo-plateau bursting (Vo et al. 2010)
|
327. |
Model for K-ATP mediated bursting in mSNc DA neurons (Knowlton et al 2018)
|
328. |
Model for pancreatic beta-cells (Law et al. 2020)
|
329. |
Model of arrhythmias in a cardiac cells network (Casaleggio et al. 2014)
|
330. |
Model of DARPP-32 phosphorylation in striatal medium spiny neurons (Lindskog et al. 2006)
|
331. |
Model of eupnea and sigh generation in respiratory network (Toporikova et al 2015)
|
332. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
333. |
Model of the Xenopus tadpole swimming spinal network (Roberts et al. 2014)
|
334. |
Modeling interactions in Aplysia neuron R15 (Yu et al 2004)
|
335. |
Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
|
336. |
Modelling reduced excitability in aged CA1 neurons as a Ca-dependent process (Markaki et al. 2005)
|
337. |
Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
|
338. |
Morris-Lecar model of the barnacle giant muscle fiber (Morris, Lecar 1981)
|
339. |
Motoneuron model of self-sustained firing after spinal cord injury (Kurian et al. 2011)
|
340. |
Multi-comp. CA1 O-LM interneuron model with varying dendritic Ih distributions (Sekulic et al 2015)
|
341. |
Multicompartmental cerebellar granule cell model (Diwakar et al. 2009)
|
342. |
Multiple dynamical modes of thalamic relay neurons (Wang XJ 1994)
|
343. |
Multiple mechanisms of short term plasticity at the calyx of Held (Hennig et al. 2008)
|
344. |
Multiple modes of a conditional neural oscillator (Epstein, Marder 1990)
|
345. |
Multiplexed coding in Purkinje neuron dendrites (Zang and De Schutter 2021)
|
346. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
347. |
Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)
|
348. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
349. |
MyFirstNEURON (Houweling, Sejnowski 1997)
|
350. |
Na channel mutations in the dentate gyrus (Thomas et al. 2009)
|
351. |
Nav1.6 sodium channel model in globus pallidus neurons (Mercer et al. 2007)
|
352. |
Neocortical pyramidal neuron: deep; effects of dopamine (Durstewitz et al 2000)
|
353. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
354. |
Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
|
355. |
Neural mass model of spindle generation in the isolated thalamus (Schellenberger Costa et al. 2016)
|
356. |
Neural mass model of the sleeping thalamocortical system (Schellenberger Costa et al 2016)
|
357. |
NeuroGPU example on L5_TTPC1_cADpyr232_1 (Ben-Shalom 2022)(Ramaswamy et al., 2015)
|
358. |
Neuromusculoskeletal modeling with neural and finite element models (Volk et al, 2021)
|
359. |
Neuronal dendrite calcium wave model (Neymotin et al, 2015)
|
360. |
Nigral dopaminergic neurons: effects of ethanol on Ih (Migliore et al. 2008)
|
361. |
NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
|
362. |
Nodose sensory neuron (Schild et al. 1994, Schild and Kunze 1997)
|
363. |
O-LM interneuron model (Lawrence et al. 2006)
|
364. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
365. |
Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
|
366. |
Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
|
367. |
Olfactory Bulb Network (Davison et al 2003)
|
368. |
Olfactory Mitral Cell (Bhalla, Bower 1993)
|
369. |
Olfactory Mitral Cell (Davison et al 2000)
|
370. |
Optical stimulation of a channelrhodopsin-2 positive pyramidal neuron model (Foutz et al 2012)
|
371. |
Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007)
|
372. |
Orientation preference in L23 V1 pyramidal neurons (Park et al 2019)
|
373. |
Paired turbulence and light effect on calcium increase in Hermissenda (Blackwell 2004)
|
374. |
Paradoxical effect of fAHP amplitude on gain in dentate gyrus granule cells (Jaffe & Brenner 2018)
|
375. |
Paradoxical GABA-mediated excitation (Lewin et al. 2012)
|
376. |
Parallel Tempering MCMC on Liu et al 1998 (Wang et al 2022)
|
377. |
Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011)
|
378. |
Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
|
379. |
Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)
|
380. |
Permeation and inactivation of CaV1.2 Ca2+ channels (Babich et al. 2007)
|
381. |
Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015)
|
382. |
Phase response curve of a globus pallidal neuron (Fujita et al. 2011)
|
383. |
Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)
|
384. |
Prediction for the presence of voltage-gated Ca2+ channels in myelinated central axons (Brown 2003)
|
385. |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
|
386. |
Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011)
|
387. |
PyMUS: A Python based Motor Unit Simulator (Kim & Kim 2018)
|
388. |
Pyramidal neuron coincidence detection tuned by dendritic branching pattern (Schaefer et al 2003)
|
389. |
Pyramidal neuron conductances state and STDP (Delgado et al. 2010)
|
390. |
Pyramidal Neuron Deep: Constrained by experiment (Dyhrfjeld-Johnsen et al. 2005)
|
391. |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
|
392. |
Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001)
|
393. |
Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
|
394. |
Rat LGN Thalamocortical Neuron (Connelly et al 2015, 2016)
|
395. |
Rat phrenic motor neuron (Amini et al 2004)
|
396. |
Rat subthalamic projection neuron (Gillies and Willshaw 2006)
|
397. |
Reciprocal regulation of rod and cone synapse by NO (Kourennyi et al 2004)
|
398. |
Reconstructing cerebellar granule layer evoked LFP using convolution (ReConv) (Diwakar et al. 2011)
|
399. |
Reduced-morphology model of CA1 pyramidal cells optimized + validated w/ HippoUnit (Tomko et al '21)
|
400. |
Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010)
|
401. |
Regulation of the firing pattern in dopamine neurons (Komendantov et al 2004)
|
402. |
Rejuvenation model of dopamine neuron (Chan et al. 2007)
|
403. |
Reliability of Morris-Lecar neurons with added T, h, and AHP currents (Zeldenrust et al. 2013)
|
404. |
Retinal Ganglion Cell: I-CaN and I-CaL (Benison et al. 2001)
|
405. |
Reverberatory bursts propagation and synchronization in developing cultured NNs (Huang et al 2016)
|
406. |
Rhesus Monkey Layer 3 Pyramidal Neurons: V1 vs PFC (Amatrudo, Weaver et al. 2012)
|
407. |
Rhesus Monkey Layer 3 Pyramidal Neurons: Young vs aged PFC (Coskren et al. 2015)
|
408. |
Rhesus Monkey Young and Aged L3 PFC Pyramidal Neurons (Rumbell et al. 2016)
|
409. |
Ribbon Synapse (Sikora et al 2005)
|
410. |
Robust and tunable bursting requires slow positive feedback (Franci et al 2018)
|
411. |
Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)
|
412. |
Rod photoreceptor (Barnes and Hille 1989, Publio et al. 2006, Kourennyi and Liu et al. 2004)
|
413. |
Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017)
|
414. |
Role of the AIS in the control of spontaneous frequency of dopaminergic neurons (Meza et al 2017)
|
415. |
Salamander retinal ganglian cells: morphology influences firing (Sheasby, Fohlmeister 1999)
|
416. |
Salamander retinal ganglion cell: ion channels (Fohlmeister, Miller 1997)
|
417. |
Schiz.-linked gene effects on intrinsic single-neuron excitability (Maki-Marttunen et al. 2016)
|
418. |
SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018)
|
419. |
Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
|
420. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
421. |
Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
|
422. |
Simulated light response in rod photoreceptors (Liu and Kourennyi 2004)
|
423. |
Simulation study of Andersen-Tawil syndrome (Sung et al 2006)
|
424. |
Single-cell comprehensive biophysical model of SN pars compacta (Muddapu & Chakravarthy 2021)
|
425. |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
|
426. |
SN-MN neurons of Aplysia (Zhou et al. 2014)
|
427. |
Space clamp problems in neurons with voltage-gated conductances (Bar-Yehuda and Korngreen 2008)
|
428. |
Spatial coupling tunes NMDA receptor responses via Ca2+ diffusion (Iacobucci and Popescu 2019)
|
429. |
Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017)
|
430. |
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
|
431. |
Spike frequency adaptation in the LGMD (Peron and Gabbiani 2009)
|
432. |
Spike timing detection in different forms of LTD (Doi et al 2005)
|
433. |
Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007)
|
434. |
Spinal motoneuron recruitment regulated by ionic channels during fictive locomotion (Zhang & Dai 20)
|
435. |
Spine fusion and branching affects synaptic response (Rusakov et al 1996, 1997)
|
436. |
Spine neck plasticity controls postsynaptic calcium signals (Grunditz et al. 2008)
|
437. |
Spiny Projection Neuron Ca2+ based plasticity is robust to in vivo spike train (Dorman&Blackwell)
|
438. |
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
|
439. |
STDP and BDNF in CA1 spines (Solinas et al. 2019)
|
440. |
STDP depends on dendritic synapse location (Letzkus et al. 2006)
|
441. |
Stochastic automata network Markov model descriptors of coupled Ca2+ channels (Nguyen et al. 2005)
|
442. |
Stochastic calcium mechanisms cause dendritic calcium spike variability (Anwar et al. 2013)
|
443. |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
|
444. |
Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)
|
445. |
Striatum D1 Striosome and Matrix Upstates (Prager et al., 2020)
|
446. |
Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
|
447. |
Study of augmented Rubin and Terman 2004 deep brain stim. model in Parkinsons (Pascual et al. 2006)
|
448. |
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
|
449. |
Superior paraolivary nucleus neuron (Kopp-Scheinpflug et al. 2011)
|
450. |
Sympathetic Preganglionic Neurone (Briant et al. 2014)
|
451. |
Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
|
452. |
Synaptic integration in a model of granule cells (Gabbiani et al 1994)
|
453. |
Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)
|
454. |
Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008)
|
455. |
Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
|
456. |
T channel currents (Vitko et al 2005)
|
457. |
T-type Ca current in thalamic neurons (Wang et al 1991)
|
458. |
T-type Calcium currents (McRory et al 2001)
|
459. |
Temperature-Dependent Pyloric Pacemaker Kernel (Caplan JS et al., 2014)
|
460. |
Temporal decorrelation by intrinsic cellular dynamics (Wang et al 2003)
|
461. |
Temporal integration by stochastic recurrent network (Okamoto et al. 2007)
|
462. |
Thalamic interneuron multicompartment model (Zhu et al. 1999)
|
463. |
Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005)
|
464. |
Thalamic quiescence of spike and wave seizures (Lytton et al 1997)
|
465. |
Thalamic Relay Neuron: I-T current (Williams, Stuart 2000)
|
466. |
Thalamic Reticular Network (Destexhe et al 1994)
|
467. |
Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996)
|
468. |
Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
|
469. |
Thalamocortical loop with delay for investigation of absence epilepsy (Liu et al 2019)
|
470. |
Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
|
471. |
Thalamocortical augmenting response (Bazhenov et al 1998)
|
472. |
Thalamocortical control of propofol phase-amplitude coupling (Soplata et al 2017)
|
473. |
Thalamocortical model of spike and wave seizures (Suffczynski et al. 2004)
|
474. |
Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018)
|
475. |
Thalamocortical relay neuron models constrained by experiment and optimization (Iavarone et al 2019)
|
476. |
The APP in C-terminal domain alters CA1 neuron firing (Pousinha et al 2019)
|
477. |
The dynamics underlying pseudo-plateau bursting in a pituitary cell model (Teka et al. 2011)
|
478. |
The electrodiffusive neuron-extracellular-glia (edNEG) model (Sætra et al. 2021)
|
479. |
The electrodiffusive Pinsky-Rinzel (edPR) model (Sætra et al., 2020)
|
480. |
The microcircuits of striatum in silico (Hjorth et al 2020)
|
481. |
The origin of different spike and wave-like events (Hall et al 2017)
|
482. |
The relationship between two fast/slow analysis techniques for bursting oscill. (Teka et al. 2012)
|
483. |
The subcellular distribution of T-type Ca2+ channels in LGN interneurons (Allken et al. 2014)
|
484. |
Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
|
485. |
Tonic activation of extrasynaptic NMDA-R promotes bistability (Gall & Dupont 2020)
|
486. |
Tonic neuron in spinal lamina I: prolongation of subthreshold depol. (Prescott and De Koninck 2005)
|
487. |
Touch Sensory Cells (T Cells) of the Leech (Cataldo et al. 2004) (Scuri et al. 2007)
|
488. |
Transmitter release and Ca diffusion models (Yamada and Zucker 1992)
|
489. |
Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
|
490. |
Two forms of synaptic depression by neuromodulation of presynaptic Ca2+ channels (Burke et al 2018)
|
491. |
Two-cell inhibitory network bursting dynamics captured in a one-dimensional map (Matveev et al 2007)
|
492. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
493. |
Understanding how fast activating K+ channels promote bursting in pituitary cells (Vo et al 2014)
|
494. |
Using Strahler's analysis to reduce realistic models (Marasco et al, 2013)
|
495. |
Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++)
|
496. |
Ventricular cell model (Luo Rudy dynamic model) (Luo Rudy 1994) used in (Wang et al 2006) (XPP)
|
497. |
Ventromedial Thalamocortical Neuron (Bichler et al 2021)
|
498. |
Visual physiology of the layer 4 cortical circuit in silico (Arkhipov et al 2018)
|
499. |
VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
|