ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/modellist/241794.

Models that contain the Implementer : Telenczuk, Maria [mtelenczuk at unic.cnrs-gif.fr]

Re-display model names without descriptions
    Models   Description
1.  Contribution of the axon initial segment to APs recorded extracellularly (Telenczuk et al 2018)
"... It was recently proposed that at onset of an (Action Potential) AP the soma and the (Axon Initial Segment) AIS form a dipole. We study the extracellular signature (the extracellular action potential, EAP) generated by such a dipole. First, we demonstrate the formation of the dipole and its extracellular signature in detailed morphological models of a reconstructed pyramidal neuron. Then, we study the EAP waveform and its spatial dependence in models with axonal AP initiation and contrast it with the EAP obtained in models with somatic AP initiation. We show that in the models with axonal AP initiation the dipole forms between somatodendritic compartments and the AIS, and not between soma and dendrites as in the classical models. ..."
2.  The basis of sharp spike onset in standard biophysical models (Telenczuk et al 2017)
"In most vertebrate neurons, spikes initiate in the axonal initial segment (AIS). When recorded in the soma, they have a surprisingly sharp onset, as if sodium (Na) channels opened abruptly. The main view stipulates that spikes initiate in a conventional manner at the distal end of the AIS, then progressively sharpen as they backpropagate to the soma. We examined the biophysical models used to substantiate this view, and we found that spikes do not initiate through a local axonal current loop that propagates along the axon, but through a global current loop encompassing the AIS and soma, which forms an electrical dipole. Therefore, the phenomenon is not adequately modeled as the backpropagation of an electrical wave along the axon, since the wavelength would be as large as the entire system. Instead, in these models, we found that spike initiation rather follows the critical resistive coupling model proposed recently, where the Na current entering the AIS is matched by the axial resistive current flowing to the soma. ..."

Re-display model names without descriptions