| Models |
1. |
A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
|
2. |
A focal seizure model with ion concentration changes (Gentiletti et al., 2022)
|
3. |
A multi-compartment model for interneurons in the dLGN (Halnes et al. 2011)
|
4. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
5. |
A network model of tail withdrawal in Aplysia (White et al 1993)
|
6. |
A single column thalamocortical network model (Traub et al 2005)
|
7. |
A synapse model for developing somatosensory cortex (Manninen et al 2020)
|
8. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
9. |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
|
10. |
Action potential of mouse urinary bladder smooth muscle (Mahapatra et al 2018)
|
11. |
Activity dependent changes in motoneurones (Dai Y et al 2002, Gardiner et al 2002)
|
12. |
Activity dependent conductances in a neuron model (Liu et al. 1998)
|
13. |
Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005)
|
14. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
|
15. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
|
16. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
|
17. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
|
18. |
Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
|
19. |
Allen Institute: Nr5a1-Cre VISp layer 4 329322394
|
20. |
Allen Institute: Nr5a1-Cre VISp layer 4 472306544
|
21. |
Allen Institute: Nr5a1-Cre VISp layer 4 472442377
|
22. |
Allen Institute: Nr5a1-Cre VISp layer 4 472451419
|
23. |
Allen Institute: Nr5a1-Cre VISp layer 4 472915634
|
24. |
Allen Institute: Nr5a1-Cre VISp layer 4 473834758
|
25. |
Allen Institute: Nr5a1-Cre VISp layer 4 473863035
|
26. |
Allen Institute: Nr5a1-Cre VISp layer 4 473871429
|
27. |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904
|
28. |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
|
29. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
|
30. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
|
31. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
|
32. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
|
33. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
|
34. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
|
35. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
|
36. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
|
37. |
Allen Institute: Rbp4-Cre VISp layer 5 472424854
|
38. |
Allen Institute: Rbp4-Cre VISp layer 6a 473871592
|
39. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
|
40. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
|
41. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
|
42. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
|
43. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
|
44. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
|
45. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
|
46. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
|
47. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
|
48. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
|
49. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
|
50. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
|
51. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
|
52. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
|
53. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
|
54. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
|
55. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
|
56. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
|
57. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
|
58. |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
|
59. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
|
60. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
|
61. |
Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
|
62. |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
|
63. |
Alpha rhythm in vitro visual cortex (Traub et al 2020)
|
64. |
Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)
|
65. |
AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
|
66. |
Apical Length Governs Computational Diversity of Layer 5 Pyramidal Neurons (Galloni et al 2020)
|
67. |
Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)
|
68. |
Axonal Projection and Interneuron Types (Helmstaedter et al. 2008)
|
69. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
70. |
CA1 pyramidal neuron (Combe et al 2018)
|
71. |
CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)
|
72. |
CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)
|
73. |
CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)
|
74. |
CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994)
|
75. |
CA3 pyramidal neuron (Lazarewicz et al 2002)
|
76. |
CA3 Pyramidal Neuron (Migliore et al 1995)
|
77. |
CA3 pyramidal neuron (Safiulina et al. 2010)
|
78. |
CA3 pyramidal neuron: firing properties (Hemond et al. 2008)
|
79. |
Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011)
|
80. |
Calcium influx during striatal upstates (Evans et al. 2013)
|
81. |
Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
|
82. |
Calcium spikes in basal dendrites (Kampa and Stuart 2006)
|
83. |
Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
|
84. |
Cardiac Atrial Cell (Courtemanche et al 1998)
|
85. |
Cardiac Atrial Cell (Courtemanche et al 1998) (C++)
|
86. |
Cell signaling/ion channel variability effects on neuronal response (Anderson, Makadia, et al. 2015)
|
87. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
88. |
Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
|
89. |
Channel density variability among CA1 neurons (Migliore et al. 2018)
|
90. |
CN bushy, stellate neurons (Rothman, Manis 2003)
|
91. |
CN bushy, stellate neurons (Rothman, Manis 2003) (Brian 2)
|
92. |
CN bushy, stellate neurons (Rothman, Manis 2003) (Brian)
|
93. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
94. |
Compartmentalization of GABAergic inhibition by dendritic spines (Chiu et al. 2013)
|
95. |
Complex CA1-neuron to study AP initiation (Wimmer et al. 2010)
|
96. |
Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018)
|
97. |
Computational modeling of ultrasonic Subthalamic Nucleus stimulation (Tarnaud et al 2019)
|
98. |
Computer models of corticospinal neurons replicate in vitro dynamics (Neymotin et al. 2017)
|
99. |
Conductance-based model of rodent thoracic sympathetic postganglionic neuron (McKinnon et al 2019)
|
100. |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
|
101. |
Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020)
|
102. |
Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
|
103. |
Decorrelation in the developing visual thalamus (Tikidji-Hamburyan et al, accepted)
|
104. |
Dendritic L-type Ca currents in motoneurons (Carlin et al 2000)
|
105. |
Dendritic processing of excitatory synaptic input in GnRH neurons (Roberts et al. 2006)
|
106. |
Dendritica (Vetter et al 2001)
|
107. |
Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
|
108. |
Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999)
|
109. |
Dentate gyrus network model (Santhakumar et al 2005)
|
110. |
Dentate gyrus network model (Tejada et al 2014)
|
111. |
Determinants of the intracellular and extracellular waveforms in DA neurons (Lopez-Jury et al 2018)
|
112. |
Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)
|
113. |
Discharge hysteresis in motoneurons (Powers & Heckman 2015)
|
114. |
Discrimination on behavioral time-scales mediated by reaction-diffusion in dendrites (Bhalla 2017)
|
115. |
Double cable myelinated axon (Layer 5 pyramidal neuron; Cohen et al 2020)
|
116. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
117. |
Dynamical assessment of ion channels during in vivo-like states (Guet-McCreight & Skinner 2020)
|
118. |
Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006)
|
119. |
Effects of Acetyl-L-carnitine on neural transmission (Lombardo et al 2004)
|
120. |
Effects of Dopamine Modulation and KIR Inactivation in NAc Medium Spiny Neurons (Steephen 2011)
|
121. |
Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
|
122. |
Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
|
123. |
Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016)
|
124. |
Enhanced Excitability in Hermissenda: modulation by 5-HT (Cai et al 2003)
|
125. |
ERG current in repolarizing plateau potentials in dopamine neurons (Canavier et al 2007)
|
126. |
Excitability of PFC Basal Dendrites (Acker and Antic 2009)
|
127. |
Excitation-contraction coupling in an integrative heart cell model (Greenstein et al 2006)
|
128. |
Excitation-contraction coupling/mitochondrial energetics (ECME) model (Cortassa et al. 2006)
|
129. |
Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
|
130. |
FHF2KO and Wild-Type Mouse Cardiomyocyte Strands (Park et al 2020)
|
131. |
Firing neocortical layer V pyramidal neuron (Reetz et al. 2014; Stadler et al. 2014)
|
132. |
Gamma genesis in the basolateral amygdala (Feng et al 2019)
|
133. |
Global structure, robustness, and modulation of neuronal models (Goldman et al. 2001)
|
134. |
Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008)
|
135. |
Hodgkin-Huxley model of persistent activity in PFC neurons (Winograd et al. 2008) (NEURON python)
|
136. |
Hodgkin-Huxley model of persistent activity in prefrontal cortex neurons (Winograd et al. 2008)
|
137. |
Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)
|
138. |
Hyperexcitability from Nav1.2 channel loss in neocortical pyramidal cells (Spratt et al 2021)
|
139. |
Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005)
|
140. |
Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)
|
141. |
Impedance spectrum in cortical tissue: implications for LFP signal propagation (Miceli et al. 2017)
|
142. |
Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007)
|
143. |
Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007)
|
144. |
Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005)
|
145. |
Ionic mechanisms of bursting in CA3 pyramidal neurons (Xu and Clancy 2008)
|
146. |
Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
|
147. |
Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
|
148. |
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
|
149. |
Kv4.3, Kv1.4 encoded K channel in heart cells & tachy. (Winslow et al 1999, Greenstein et al 2000)
|
150. |
L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
|
151. |
L5 PFC pyramidal neurons (Papoutsi et al. 2017)
|
152. |
L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011)
|
153. |
Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
|
154. |
Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)
|
155. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
156. |
Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)
|
157. |
LCN-HippoModel: model of CA1 PCs deep-superficial theta firing dynamics (Navas-Olive et al 2020)
|
158. |
Leech S Cell: Modulation of Excitability by Serotonin (Burrell and Crisp 2008)
|
159. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
160. |
Long-Term Inactivation of Na+ Channels as a Mech of Adaptation in CA1 Pyr Cells (Upchurch et al '22)
|
161. |
Mathematical model for windup (Aguiar et al. 2010)
|
162. |
Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)
|
163. |
Medial vestibular neuron models (Quadroni and Knopfel 1994)
|
164. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
165. |
Modelling reduced excitability in aged CA1 neurons as a Ca-dependent process (Markaki et al. 2005)
|
166. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
167. |
MyFirstNEURON (Houweling, Sejnowski 1997)
|
168. |
Neocortical pyramidal neuron: deep; effects of dopamine (Durstewitz et al 2000)
|
169. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
170. |
NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
|
171. |
O-LM interneuron model (Lawrence et al. 2006)
|
172. |
Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
|
173. |
Olfactory Bulb Network (Davison et al 2003)
|
174. |
Olfactory Mitral Cell (Bhalla, Bower 1993)
|
175. |
Olfactory Mitral Cell (Davison et al 2000)
|
176. |
Orientation preference in L23 V1 pyramidal neurons (Park et al 2019)
|
177. |
Paradoxical GABA-mediated excitation (Lewin et al. 2012)
|
178. |
Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011)
|
179. |
Permeation and inactivation of CaV1.2 Ca2+ channels (Babich et al. 2007)
|
180. |
Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015)
|
181. |
Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)
|
182. |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
|
183. |
Pyramidal Neuron Deep: Constrained by experiment (Dyhrfjeld-Johnsen et al. 2005)
|
184. |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
|
185. |
Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
|
186. |
Rat phrenic motor neuron (Amini et al 2004)
|
187. |
Rat subthalamic projection neuron (Gillies and Willshaw 2006)
|
188. |
Reduced-morphology model of CA1 pyramidal cells optimized + validated w/ HippoUnit (Tomko et al '21)
|
189. |
Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010)
|
190. |
Relating anatomical and biophysical properties to motoneuron excitabilty (Moustafa et al. 2023)
|
191. |
Retinal Ganglion Cell: I-CaN and I-CaL (Benison et al. 2001)
|
192. |
Ribbon Synapse (Sikora et al 2005)
|
193. |
Robust and tunable bursting requires slow positive feedback (Franci et al 2018)
|
194. |
Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)
|
195. |
Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017)
|
196. |
Role of the AIS in the control of spontaneous frequency of dopaminergic neurons (Meza et al 2017)
|
197. |
Schiz.-linked gene effects on intrinsic single-neuron excitability (Maki-Marttunen et al. 2016)
|
198. |
SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018)
|
199. |
Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
|
200. |
Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
|
201. |
Simulated light response in rod photoreceptors (Liu and Kourennyi 2004)
|
202. |
Simulation study of Andersen-Tawil syndrome (Sung et al 2006)
|
203. |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
|
204. |
Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017)
|
205. |
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
|
206. |
Spinal motoneuron recruitment regulated by ionic channels during fictive locomotion (Zhang & Dai 20)
|
207. |
Spiny Projection Neuron Ca2+ based plasticity is robust to in vivo spike train (Dorman&Blackwell)
|
208. |
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
|
209. |
STDP depends on dendritic synapse location (Letzkus et al. 2006)
|
210. |
Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)
|
211. |
Study of augmented Rubin and Terman 2004 deep brain stim. model in Parkinsons (Pascual et al. 2006)
|
212. |
Sympathetic Preganglionic Neurone (Briant et al. 2014)
|
213. |
Synaptic integration in a model of granule cells (Gabbiani et al 1994)
|
214. |
Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)
|
215. |
Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
|
216. |
Temporal decorrelation by intrinsic cellular dynamics (Wang et al 2003)
|
217. |
Thalamic interneuron multicompartment model (Zhu et al. 1999)
|
218. |
Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005)
|
219. |
Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018)
|
220. |
Thalamocortical relay neuron models constrained by experiment and optimization (Iavarone et al 2019)
|
221. |
The APP in C-terminal domain alters CA1 neuron firing (Pousinha et al 2019)
|
222. |
The origin of different spike and wave-like events (Hall et al 2017)
|
223. |
The subcellular distribution of T-type Ca2+ channels in LGN interneurons (Allken et al. 2014)
|
224. |
Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
|
225. |
Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit (Ponzi et al. 2023)
|
226. |
Touch Sensory Cells (T Cells) of the Leech (Cataldo et al. 2004) (Scuri et al. 2007)
|
227. |
Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
|
228. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
229. |
Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++)
|
230. |
Ventromedial Thalamocortical Neuron (Bichler et al 2021)
|
231. |
Visual physiology of the layer 4 cortical circuit in silico (Arkhipov et al 2018)
|
232. |
VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
|