| Models |
1. |
A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
|
2. |
A multi-compartment model for interneurons in the dLGN (Halnes et al. 2011)
|
3. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
4. |
A single column thalamocortical network model (Traub et al 2005)
|
5. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
6. |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
|
7. |
Action potential of mouse urinary bladder smooth muscle (Mahapatra et al 2018)
|
8. |
Activity constraints on stable neuronal or network parameters (Olypher and Calabrese 2007)
|
9. |
Activity dependent changes in motoneurones (Dai Y et al 2002, Gardiner et al 2002)
|
10. |
Activity dependent conductances in a neuron model (Liu et al. 1998)
|
11. |
Activity patterns in a subthalamopallidal network of the basal ganglia model (Terman et al 2002)
|
12. |
Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005)
|
13. |
Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
|
14. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
|
15. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
|
16. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
|
17. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
|
18. |
Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
|
19. |
Allen Institute: Nr5a1-Cre VISp layer 4 329322394
|
20. |
Allen Institute: Nr5a1-Cre VISp layer 4 472306544
|
21. |
Allen Institute: Nr5a1-Cre VISp layer 4 472442377
|
22. |
Allen Institute: Nr5a1-Cre VISp layer 4 472451419
|
23. |
Allen Institute: Nr5a1-Cre VISp layer 4 472915634
|
24. |
Allen Institute: Nr5a1-Cre VISp layer 4 473834758
|
25. |
Allen Institute: Nr5a1-Cre VISp layer 4 473863035
|
26. |
Allen Institute: Nr5a1-Cre VISp layer 4 473871429
|
27. |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904
|
28. |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
|
29. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
|
30. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
|
31. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
|
32. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
|
33. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
|
34. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
|
35. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
|
36. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
|
37. |
Allen Institute: Rbp4-Cre VISp layer 5 472424854
|
38. |
Allen Institute: Rbp4-Cre VISp layer 6a 473871592
|
39. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
|
40. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
|
41. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
|
42. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
|
43. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
|
44. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
|
45. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
|
46. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
|
47. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
|
48. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
|
49. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
|
50. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
|
51. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
|
52. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
|
53. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
|
54. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
|
55. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
|
56. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
|
57. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
|
58. |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
|
59. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
|
60. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
|
61. |
Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
|
62. |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
|
63. |
Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)
|
64. |
AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
|
65. |
Availability of low-threshold Ca2+ current in retinal ganglion cells (Lee SC et al. 2003)
|
66. |
Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
|
67. |
Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)
|
68. |
Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2012)
|
69. |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
|
70. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
71. |
CA1 pyramidal neuron (Combe et al 2018)
|
72. |
CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)
|
73. |
CA1 pyramidal neuron: functional significance of axonal Kv7 channels (Shah et al. 2008)
|
74. |
CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)
|
75. |
CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)
|
76. |
CA3 pyramidal neuron (Lazarewicz et al 2002)
|
77. |
CA3 Pyramidal Neuron (Migliore et al 1995)
|
78. |
CA3 pyramidal neuron (Safiulina et al. 2010)
|
79. |
CA3 pyramidal neuron: firing properties (Hemond et al. 2008)
|
80. |
Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011)
|
81. |
Calcium spikes in basal dendrites (Kampa and Stuart 2006)
|
82. |
Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
|
83. |
Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)
|
84. |
Cerebellar nuclear neuron (Sudhakar et al., 2015)
|
85. |
Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
|
86. |
Cerebellar purkinje cell (De Schutter and Bower 1994)
|
87. |
Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001)
|
88. |
Channel density variability among CA1 neurons (Migliore et al. 2018)
|
89. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
90. |
Complex CA1-neuron to study AP initiation (Wimmer et al. 2010)
|
91. |
Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018)
|
92. |
Computer model of clonazepam`s effect in thalamic slice (Lytton 1997)
|
93. |
Computer simulations of neuron-glia interactions mediated by ion flux (Somjen et al. 2008)
|
94. |
Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)
|
95. |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
|
96. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
97. |
Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
|
98. |
Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
|
99. |
Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999)
|
100. |
Dentate gyrus network model (Santhakumar et al 2005)
|
101. |
Dentate gyrus network model (Tejada et al 2014)
|
102. |
Determinants of the intracellular and extracellular waveforms in DA neurons (Lopez-Jury et al 2018)
|
103. |
Differences between type A and B photoreceptors (Blackwell 2006)
|
104. |
Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)
|
105. |
Dopamine neuron of the vent. periaqu. gray and dors. raphe nucleus (vlPAG/DRN) (Dougalis et al 2017)
|
106. |
Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
|
107. |
Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
|
108. |
Excitability of PFC Basal Dendrites (Acker and Antic 2009)
|
109. |
Failure of Deep Brain Stimulation in a basal ganglia neuronal network model (Dovzhenok et al. 2013)
|
110. |
Frog second-order vestibular neuron models (Rossert et al. 2011)
|
111. |
Global structure, robustness, and modulation of neuronal models (Goldman et al. 2001)
|
112. |
High frequency stimulation of the Subthalamic Nucleus (Rubin and Terman 2004)
|
113. |
Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)
|
114. |
Hypocretin and Locus Coeruleus model neurons (Carter et al 2012)
|
115. |
Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005)
|
116. |
IA and IT interact to set first spike latency (Molineux et al 2005)
|
117. |
Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)
|
118. |
Inferior Olive, subthreshold oscillations (Torben-Nielsen, Segev, Yarom 2012)
|
119. |
Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009)
|
120. |
Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005)
|
121. |
Ionic mechanisms of bursting in CA3 pyramidal neurons (Xu and Clancy 2008)
|
122. |
Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
|
123. |
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
|
124. |
L5 PFC pyramidal neurons (Papoutsi et al. 2017)
|
125. |
L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011)
|
126. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
127. |
Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)
|
128. |
LGMD with 3D morphology and active dendrites (Dewell & Gabbiani 2018)
|
129. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
130. |
Low Threshold Calcium Currents in TC cells (Destexhe et al 1998)
|
131. |
Low Threshold Calcium Currents in TC cells (Destexhe et al 1998) (Brian)
|
132. |
Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)
|
133. |
Medial vestibular neuron models (Quadroni and Knopfel 1994)
|
134. |
MEG of Somatosensory Neocortex (Jones et al. 2007)
|
135. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
136. |
Midbrain torus semicircularis neuron model (Aumentado-Armstrong et al. 2015)
|
137. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
138. |
Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)
|
139. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
140. |
MyFirstNEURON (Houweling, Sejnowski 1997)
|
141. |
Neuronal dendrite calcium wave model (Neymotin et al, 2015)
|
142. |
NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
|
143. |
Nodose sensory neuron (Schild et al. 1994, Schild and Kunze 1997)
|
144. |
O-LM interneuron model (Lawrence et al. 2006)
|
145. |
Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007)
|
146. |
Orientation preference in L23 V1 pyramidal neurons (Park et al 2019)
|
147. |
Paradoxical effect of fAHP amplitude on gain in dentate gyrus granule cells (Jaffe & Brenner 2018)
|
148. |
Paradoxical GABA-mediated excitation (Lewin et al. 2012)
|
149. |
Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011)
|
150. |
Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)
|
151. |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
|
152. |
Pyramidal Neuron Deep: Constrained by experiment (Dyhrfjeld-Johnsen et al. 2005)
|
153. |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
|
154. |
Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001)
|
155. |
Rat LGN Thalamocortical Neuron (Connelly et al 2015, 2016)
|
156. |
Rat phrenic motor neuron (Amini et al 2004)
|
157. |
Rat subthalamic projection neuron (Gillies and Willshaw 2006)
|
158. |
Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010)
|
159. |
Reliability of Morris-Lecar neurons with added T, h, and AHP currents (Zeldenrust et al. 2013)
|
160. |
Robust and tunable bursting requires slow positive feedback (Franci et al 2018)
|
161. |
Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)
|
162. |
Role of the AIS in the control of spontaneous frequency of dopaminergic neurons (Meza et al 2017)
|
163. |
Schiz.-linked gene effects on intrinsic single-neuron excitability (Maki-Marttunen et al. 2016)
|
164. |
SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018)
|
165. |
Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
|
166. |
Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
|
167. |
Simulation study of Andersen-Tawil syndrome (Sung et al 2006)
|
168. |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
|
169. |
Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007)
|
170. |
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
|
171. |
STDP depends on dendritic synapse location (Letzkus et al. 2006)
|
172. |
Stochastic calcium mechanisms cause dendritic calcium spike variability (Anwar et al. 2013)
|
173. |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
|
174. |
Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)
|
175. |
Study of augmented Rubin and Terman 2004 deep brain stim. model in Parkinsons (Pascual et al. 2006)
|
176. |
Superior paraolivary nucleus neuron (Kopp-Scheinpflug et al. 2011)
|
177. |
Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008)
|
178. |
T channel currents (Vitko et al 2005)
|
179. |
T-type Ca current in thalamic neurons (Wang et al 1991)
|
180. |
T-type Calcium currents (McRory et al 2001)
|
181. |
Thalamic interneuron multicompartment model (Zhu et al. 1999)
|
182. |
Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005)
|
183. |
Thalamic quiescence of spike and wave seizures (Lytton et al 1997)
|
184. |
Thalamic Relay Neuron: I-T current (Williams, Stuart 2000)
|
185. |
Thalamic Reticular Network (Destexhe et al 1994)
|
186. |
Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996)
|
187. |
Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
|
188. |
Thalamocortical loop with delay for investigation of absence epilepsy (Liu et al 2019)
|
189. |
Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
|
190. |
Thalamocortical augmenting response (Bazhenov et al 1998)
|
191. |
Thalamocortical model of spike and wave seizures (Suffczynski et al. 2004)
|
192. |
Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018)
|
193. |
Thalamocortical relay neuron models constrained by experiment and optimization (Iavarone et al 2019)
|
194. |
The origin of different spike and wave-like events (Hall et al 2017)
|
195. |
The subcellular distribution of T-type Ca2+ channels in LGN interneurons (Allken et al. 2014)
|
196. |
Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
|
197. |
Two-cell inhibitory network bursting dynamics captured in a one-dimensional map (Matveev et al 2007)
|
198. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
199. |
Using Strahler`s analysis to reduce realistic models (Marasco et al, 2013)
|
200. |
Visual physiology of the layer 4 cortical circuit in silico (Arkhipov et al 2018)
|
201. |
VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
|