| Models |
1. |
3D model of the olfactory bulb (Migliore et al. 2014)
|
2. |
3D olfactory bulb: operators (Migliore et al, 2015)
|
3. |
A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
|
4. |
A biophysical model of vestibular ganglion neurons (Hight & Kalluri 2016, Ventura & Kalluri 2018)
|
5. |
A model of ventral Hippocampal CA1 pyramidal neurons of Tg2576 AD mice (Spoleti et al. 2021)
|
6. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
7. |
A network model of tail withdrawal in Aplysia (White et al 1993)
|
8. |
A simplified cerebellar Purkinje neuron (the PPR model) (Brown et al. 2011)
|
9. |
A single column thalamocortical network model (Traub et al 2005)
|
10. |
A synapse model for developing somatosensory cortex (Manninen et al 2020)
|
11. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
12. |
A two-stage model of dendritic integration in CA1 pyramidal neurons (Katz et al. 2009)
|
13. |
Actions of Rotenone on ionic currents and MEPPs in Mouse Hippocampal Neurons (Huang et al 2018)
|
14. |
Active dendrites and spike propagation in a hippocampal interneuron (Saraga et al 2003)
|
15. |
Active dendrites shape signaling microdomains in hippocampal neurons (Basak & Narayanan 2018)
|
16. |
Active dendritic integration in robust and precise grid cell firing (Schmidt-Hieber et al 2017)
|
17. |
Activity dependent changes in motoneurones (Dai Y et al 2002, Gardiner et al 2002)
|
18. |
Activity dependent conductances in a neuron model (Liu et al. 1998)
|
19. |
Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005)
|
20. |
Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
|
21. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
|
22. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
|
23. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
|
24. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
|
25. |
Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
|
26. |
Allen Institute: Nr5a1-Cre VISp layer 4 329322394
|
27. |
Allen Institute: Nr5a1-Cre VISp layer 4 472306544
|
28. |
Allen Institute: Nr5a1-Cre VISp layer 4 472442377
|
29. |
Allen Institute: Nr5a1-Cre VISp layer 4 472451419
|
30. |
Allen Institute: Nr5a1-Cre VISp layer 4 472915634
|
31. |
Allen Institute: Nr5a1-Cre VISp layer 4 473834758
|
32. |
Allen Institute: Nr5a1-Cre VISp layer 4 473863035
|
33. |
Allen Institute: Nr5a1-Cre VISp layer 4 473871429
|
34. |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904
|
35. |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
|
36. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
|
37. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
|
38. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
|
39. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
|
40. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
|
41. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
|
42. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
|
43. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
|
44. |
Allen Institute: Rbp4-Cre VISp layer 5 472424854
|
45. |
Allen Institute: Rbp4-Cre VISp layer 6a 473871592
|
46. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
|
47. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
|
48. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
|
49. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
|
50. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
|
51. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
|
52. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
|
53. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
|
54. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
|
55. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
|
56. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
|
57. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
|
58. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
|
59. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
|
60. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
|
61. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
|
62. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
|
63. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
|
64. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
|
65. |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
|
66. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
|
67. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
|
68. |
Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
|
69. |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
|
70. |
Alpha rhythm in vitro visual cortex (Traub et al 2020)
|
71. |
Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)
|
72. |
Amyloid-beta effects on release probability and integration at CA3-CA1 synapses (Romani et al. 2013)
|
73. |
An allosteric kinetics of NMDARs in STDP (Urakubo et al. 2008)
|
74. |
AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
|
75. |
AP shape and parameter constraints in optimization of compartment models (Weaver and Wearne 2006)
|
76. |
Apical Length Governs Computational Diversity of Layer 5 Pyramidal Neurons (Galloni et al 2020)
|
77. |
Ave. neuron model for slow-wave sleep in cortex Tatsuki 2016 Yoshida 2018 Rasmussen 2017 (all et al)
|
78. |
Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
|
79. |
Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)
|
80. |
BCM-like synaptic plasticity with conductance-based models (Narayanan Johnston, 2010)
|
81. |
Burst and tonic firing behaviour in subfornical organ (SFO) neurons (Medlock et al 2018)
|
82. |
Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
|
83. |
Bursting and oscillations in RD1 Retina driven by AII Amacrine Neuron (Choi et al. 2014)
|
84. |
Bursting and resonance in cerebellar granule cells (D'Angelo et al. 2001)
|
85. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
86. |
CA1 interneuron: K currents (Lien et al 2002)
|
87. |
CA1 network model for place cell dynamics (Turi et al 2019)
|
88. |
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2020)
|
89. |
CA1 oriens alveus interneurons: signaling properties (Minneci et al. 2007)
|
90. |
CA1 pyramidal cell: I_NaP and I_M contributions to somatic bursting (Golomb et al 2006)
|
91. |
CA1 pyramidal cell: reconstructed axonal arbor and failures at weak gap junctions (Vladimirov 2011)
|
92. |
CA1 pyramidal neuron (Combe et al 2018)
|
93. |
CA1 pyramidal neuron (Migliore et al 1999)
|
94. |
CA1 pyramidal neuron synaptic integration (Li and Ascoli 2006, 2008)
|
95. |
CA1 pyramidal neuron to study INaP properties and repetitive firing (Uebachs et al. 2010)
|
96. |
CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)
|
97. |
CA1 pyramidal neuron: action potential backpropagation (Gasparini & Migliore 2015)
|
98. |
CA1 pyramidal neuron: calculation of MRI signals (Cassara et al. 2008)
|
99. |
CA1 pyramidal neuron: conditional boosting of dendritic APs (Watanabe et al 2002)
|
100. |
CA1 pyramidal neuron: dendritic spike initiation (Gasparini et al 2004)
|
101. |
CA1 pyramidal neuron: depolarization block (Bianchi et al. 2012)
|
102. |
CA1 pyramidal neuron: effects of Ih on distal inputs (Migliore et al 2004)
|
103. |
CA1 pyramidal neuron: effects of Lamotrigine on dendritic excitability (Poolos et al 2002)
|
104. |
CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013)
|
105. |
CA1 pyramidal neuron: functional significance of axonal Kv7 channels (Shah et al. 2008)
|
106. |
CA1 pyramidal neuron: Ih current (Migliore et al. 2012)
|
107. |
CA1 pyramidal neuron: integration of subthreshold inputs from PP and SC (Migliore 2003)
|
108. |
CA1 pyramidal neuron: nonlinear a5-GABAAR controls synaptic NMDAR activation (Schulz et al 2018)
|
109. |
CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)
|
110. |
CA1 pyramidal neuron: rebound spiking (Ascoli et al.2010)
|
111. |
Ca1 pyramidal neuron: reduction model (Marasco et al. 2012)
|
112. |
CA1 pyramidal neuron: schizophrenic behavior (Migliore et al. 2011)
|
113. |
CA1 pyramidal neuron: signal propagation in oblique dendrites (Migliore et al 2005)
|
114. |
CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)
|
115. |
CA1 pyramidal neurons: binding properties and the magical number 7 (Migliore et al. 2008)
|
116. |
CA1 pyramidal neurons: effect of external electric field from power lines (Cavarretta et al. 2014)
|
117. |
CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)
|
118. |
CA1 pyramidal neurons: effects of Alzheimer (Culmone and Migliore 2012)
|
119. |
CA1 pyramidal neurons: effects of Kv7 (M-) channels on synaptic integration (Shah et al. 2011)
|
120. |
CA3 hippocampal pyramidal neuron with voltage-clamp intrinsic conductance data (Traub et al 1991)
|
121. |
CA3 pyramidal neuron (Lazarewicz et al 2002)
|
122. |
CA3 Pyramidal Neuron (Migliore et al 1995)
|
123. |
CA3 pyramidal neuron (Safiulina et al. 2010)
|
124. |
CA3 pyramidal neuron: firing properties (Hemond et al. 2008)
|
125. |
CA3 pyramidal neurons: Kv1.2 mediates modulation of cortical inputs (Hyun et al., 2015)
|
126. |
Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011)
|
127. |
Calcium influx during striatal upstates (Evans et al. 2013)
|
128. |
Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
|
129. |
Calcium spikes in basal dendrites (Kampa and Stuart 2006)
|
130. |
Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
|
131. |
Cell signaling/ion channel variability effects on neuronal response (Anderson, Makadia, et al. 2015)
|
132. |
Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)
|
133. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
134. |
Cerebellar purkinje cell (De Schutter and Bower 1994)
|
135. |
Cerebellar purkinje cell: interacting Kv3 and Na currents influence firing (Akemann, Knopfel 2006)
|
136. |
Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001)
|
137. |
Cerebellum granule cell FHF (Dover et al. 2016)
|
138. |
Channel density variability among CA1 neurons (Migliore et al. 2018)
|
139. |
Circadian rhythmicity shapes astrocyte morphology and neuronal function in CA1 (McCauley et al 2020)
|
140. |
Classic model of the Tritonia Swim CPG (Getting, 1989)
|
141. |
CN bushy, stellate neurons (Rothman, Manis 2003)
|
142. |
CN bushy, stellate neurons (Rothman, Manis 2003) (Brian 2)
|
143. |
CN bushy, stellate neurons (Rothman, Manis 2003) (Brian)
|
144. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
145. |
Comparison of full and reduced globus pallidus models (Hendrickson 2010)
|
146. |
Complex CA1-neuron to study AP initiation (Wimmer et al. 2010)
|
147. |
Computational analysis of NN activity and spatial reach of sharp wave-ripples (Canakci et al 2017)
|
148. |
Computational modeling of ultrasonic Subthalamic Nucleus stimulation (Tarnaud et al 2019)
|
149. |
Computational neuropharmacology of CA1 pyramidal neuron (Ferrante et al. 2008)
|
150. |
Computer models of corticospinal neurons replicate in vitro dynamics (Neymotin et al. 2017)
|
151. |
Computer simulations of neuron-glia interactions mediated by ion flux (Somjen et al. 2008)
|
152. |
Conductance-based model of rodent thoracic sympathetic postganglionic neuron (McKinnon et al 2019)
|
153. |
Contrast invariance by LGN synaptic depression (Banitt et al. 2007)
|
154. |
Control of oscillations and spontaneous firing in dopamine neurons (Rumbell & Kozloski 2019)
|
155. |
Currents contributing to decision making in neurons B31-B32 of Aplysia (Hurwitz et al. 2008)
|
156. |
Data-driven, HH-type model of the lateral pyloric (LP) cell in the STG (Nowotny et al. 2008)
|
157. |
Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
|
158. |
Dentate Gyrus Feed-forward inhibition (Ferrante et al. 2009)
|
159. |
Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999)
|
160. |
Depolarization Enhacement of Dendritic Spike Propagation (Bock et al 2022)
|
161. |
Determinants of the intracellular and extracellular waveforms in DA neurons (Lopez-Jury et al 2018)
|
162. |
DG granule cell: I-A model (Beck et al 1992)
|
163. |
Diameter, Myelination and Na/K pump interactions affect axonal resilience to high frequency spiking
|
164. |
Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites (Golding et al 2001)
|
165. |
Differences between type A and B photoreceptors (Blackwell 2006)
|
166. |
Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)
|
167. |
Discrimination on behavioral time-scales mediated by reaction-diffusion in dendrites (Bhalla 2017)
|
168. |
Distance-dependent synaptic strength in CA1 pyramidal neurons (Menon et al. 2013)
|
169. |
Dopamine neuron of the vent. periaqu. gray and dors. raphe nucleus (vlPAG/DRN) (Dougalis et al 2017)
|
170. |
Dopaminergic subtantia nigra neuron (Moubarak et al 2019)
|
171. |
DRG neuron models investigate how ion channel levels regulate firing properties (Zheng et al 2019)
|
172. |
Drosophila 3rd instar larval aCC motoneuron (Gunay et al. 2015)
|
173. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
174. |
Dynamical assessment of ion channels during in vivo-like states (Guet-McCreight & Skinner 2020)
|
175. |
Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006)
|
176. |
Early-onset epileptic encephalopathy (Miceli et al. 2015)
|
177. |
Effect of the initial synaptic state on the probability to induce LTP and LTD (Migliore et al. 2015)
|
178. |
Effect of voltage sensitive fluorescent proteins on neuronal excitability (Akemann et al. 2009)
|
179. |
Effects of Dopamine Modulation and KIR Inactivation in NAc Medium Spiny Neurons (Steephen 2011)
|
180. |
Effects of electric fields on cognitive functions (Migliore et al 2016)
|
181. |
Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
|
182. |
Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
|
183. |
Electrically-coupled Retzius neurons (Vazquez et al. 2009)
|
184. |
Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
|
185. |
Enhanced Excitability in Hermissenda: modulation by 5-HT (Cai et al 2003)
|
186. |
Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009)
|
187. |
Estimation and Production of Time Intervals (Migliore et al 2001)
|
188. |
Excitability of PFC Basal Dendrites (Acker and Antic 2009)
|
189. |
Excitability of the soma in central nervous system neurons (Safronov et al 2000)
|
190. |
Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
|
191. |
Feedforward inhibition in pyramidal cells (Ferrante & Ascoli 2015)
|
192. |
Firing neocortical layer V pyramidal neuron (Reetz et al. 2014; Stadler et al. 2014)
|
193. |
FS Striatal interneuron: K currents solve signal-to-noise problems (Kotaleski et al 2006)
|
194. |
Functional impact of dendritic branch point morphology (Ferrante et al., 2013)
|
195. |
Gamma genesis in the basolateral amygdala (Feng et al 2019)
|
196. |
Gap junction coupled network of striatal fast spiking interneurons (Hjorth et al. 2009)
|
197. |
Gating of steering signals through phasic modulation of reticulospinal neurons (Kozlov et al. 2014)
|
198. |
GC model (Beining et al 2017)
|
199. |
Global structure, robustness, and modulation of neuronal models (Goldman et al. 2001)
|
200. |
Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008)
|
201. |
Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010)
|
202. |
Glutamate mediated dendritic and somatic plateau potentials in cortical L5 pyr cells (Gao et al '20)
|
203. |
HH model of SCN neurons including a transient K+ channel (Bano-Otalora et al 2021)
|
204. |
High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)
|
205. |
Hippocampal CA1 microcircuit model including somatic and dendritic inhibition
|
206. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
207. |
Hippocampal Mossy Fiber bouton: presynaptic KV7 channel function (Martinello et al 2019)
|
208. |
Hippocampus CA1 Interneuron Specific 3 (IS3) in vivo-like virtual NN simulations (Luo et al 2020)
|
209. |
Hippocampus CA1 pyramidal model with Na channel exhibiting slow inactivation (Menon et al. 2009)
|
210. |
Homeostatic synaptic plasticity (Rabinowitch and Segev 2006a,b)
|
211. |
Hopfield and Brody model (Hopfield, Brody 2000)
|
212. |
Hypocretin and Locus Coeruleus model neurons (Carter et al 2012)
|
213. |
I A in Kenyon cells resemble Shaker currents (Pelz et al 1999)
|
214. |
IA and IT interact to set first spike latency (Molineux et al 2005)
|
215. |
Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
|
216. |
Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)
|
217. |
Impedance spectrum in cortical tissue: implications for LFP signal propagation (Miceli et al. 2017)
|
218. |
INa and IKv4.3 heterogeneity in canine LV myocytes (Flaim et al 2006)
|
219. |
Infraslow intrinsic rhythmogenesis in a subset of AOB projection neurons (Gorin et al 2016)
|
220. |
Interneuron Specific 3 Interneuron Model (Guet-McCreight et al, 2016)
|
221. |
Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007)
|
222. |
Ionic mechanisms of bursting in CA3 pyramidal neurons (Xu and Clancy 2008)
|
223. |
Ionic mechanisms of dendritic spikes (Almog and Korngreen 2014)
|
224. |
Kenyon cells in the honeybee (Wustenberg et al 2004)
|
225. |
Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
|
226. |
Kv4.3, Kv1.4 encoded K channel in heart cells & tachy. (Winslow et al 1999, Greenstein et al 2000)
|
227. |
Kv4.3, Kv1.4 encoded K(+) channel in heart cells (Greenstein et al 2000) (XPP)
|
228. |
L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
|
229. |
L5 PFC pyramidal neurons (Papoutsi et al. 2017)
|
230. |
L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011)
|
231. |
Lamprey spinal CPG neuron (Huss et al. 2007)
|
232. |
Large scale model of the olfactory bulb (Yu et al., 2013)
|
233. |
Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
|
234. |
Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)
|
235. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
236. |
Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)
|
237. |
LCN-HippoModel: model of CA1 PCs deep-superficial theta firing dynamics (Navas-Olive et al 2020)
|
238. |
Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014)
|
239. |
Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)
|
240. |
Levodopa-Induced Toxicity in Parkinson's Disease (Muddapu et al, 2022)
|
241. |
Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
|
242. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
243. |
Mature and young adult-born dentate granule cell models (T2N interface) (Beining et al. 2017)
|
244. |
MEC layer II stellate cell: Synaptic mechanisms of grid cells (Schmidt-Hieber & Hausser 2013)
|
245. |
Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)
|
246. |
Medial vestibular neuron models (Quadroni and Knopfel 1994)
|
247. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
248. |
Mixed mode oscillations as a mechanism for pseudo-plateau bursting (Vo et al. 2010)
|
249. |
Model of SK current`s influence on precision in Globus Pallidus Neurons (Deister et al. 2009)
|
250. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
251. |
Modeling interactions in Aplysia neuron R15 (Yu et al 2004)
|
252. |
Modelling reduced excitability in aged CA1 neurons as a Ca-dependent process (Markaki et al. 2005)
|
253. |
Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
|
254. |
Morphological determinants of action potential dynamics in substantia nigra (Moubarak et al 2022)
|
255. |
Multi-comp. CA1 O-LM interneuron model with varying dendritic Ih distributions (Sekulic et al 2015)
|
256. |
Multicompartmental cerebellar granule cell model (Diwakar et al. 2009)
|
257. |
Multiscale interactions between chemical and electric signaling in LTP (Bhalla 2011)
|
258. |
Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)
|
259. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
260. |
MyFirstNEURON (Houweling, Sejnowski 1997)
|
261. |
Na channel mutations in the dentate gyrus (Thomas et al. 2009)
|
262. |
NAcc medium spiny neuron: effects of cannabinoid withdrawal (Spiga et al. 2010)
|
263. |
Neocortical Layer I: I-A and I-K (Zhou, Hablitz 1996)
|
264. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
265. |
Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
|
266. |
Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011)
|
267. |
Neuronal dendrite calcium wave model (Neymotin et al, 2015)
|
268. |
Neuronal morphology goes digital ... (Parekh & Ascoli 2013)
|
269. |
Neurophysiological impact of inactivation pathways in A-type K+ channels (Fineberg et al 2012)
|
270. |
Nigral dopaminergic neurons: effects of ethanol on Ih (Migliore et al. 2008)
|
271. |
NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
|
272. |
Nodose sensory neuron (Schild et al. 1994, Schild and Kunze 1997)
|
273. |
Normal ripples, abnormal ripples, and fast ripples in a hippocampal model (Fink et al. 2015)
|
274. |
O-LM interneuron model (Lawrence et al. 2006)
|
275. |
Olfactory bulb granule cell: effects of odor deprivation (Saghatelyan et al 2005)
|
276. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
277. |
Olfactory bulb mitral and granule cell column formation (Migliore et al. 2007)
|
278. |
Olfactory bulb mitral and granule cell: dendrodendritic microcircuits (Migliore and Shepherd 2008)
|
279. |
Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
|
280. |
Olfactory bulb mitral cell: synchronization by gap junctions (Migliore et al 2005)
|
281. |
Olfactory Bulb Network (Davison et al 2003)
|
282. |
Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)
|
283. |
Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)
|
284. |
Olfactory Mitral Cell (Bhalla, Bower 1993)
|
285. |
Olfactory Mitral Cell (Davison et al 2000)
|
286. |
Opposing roles for Na+/Ca2+ exchange and Ca2+-activated K+ currents during STDP (O`Halloran 2020)
|
287. |
Orientation preference in L23 V1 pyramidal neurons (Park et al 2019)
|
288. |
Origin of heterogeneous spiking patterns in spinal dorsal horn neurons (Balachandar & Prescott 2018)
|
289. |
Paired turbulence and light effect on calcium increase in Hermissenda (Blackwell 2004)
|
290. |
Paradoxical GABA-mediated excitation (Lewin et al. 2012)
|
291. |
Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)
|
292. |
Parallel Tempering MCMC on Liu et al 1998 (Wang et al 2022)
|
293. |
Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
|
294. |
Phase response curve of a globus pallidal neuron (Fujita et al. 2011)
|
295. |
Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)
|
296. |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
|
297. |
Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011)
|
298. |
Pyramidal neuron coincidence detection tuned by dendritic branching pattern (Schaefer et al 2003)
|
299. |
Pyramidal Neuron Deep: Constrained by experiment (Dyhrfjeld-Johnsen et al. 2005)
|
300. |
Pyramidal Neuron Deep: K+ kinetics (Korngreen, Sakmann 2000)
|
301. |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
|
302. |
Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
|
303. |
Reduced-morphology model of CA1 pyramidal cells optimized + validated w/ HippoUnit (Tomko et al '21)
|
304. |
Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010)
|
305. |
Regulation of the firing pattern in dopamine neurons (Komendantov et al 2004)
|
306. |
Retinal Ganglion Cell: I-A (Benison et al 2001)
|
307. |
Rhesus Monkey Layer 3 Pyramidal Neurons: Young vs aged PFC (Coskren et al. 2015)
|
308. |
Rhesus Monkey Young and Aged L3 PFC Pyramidal Neurons (Rumbell et al. 2016)
|
309. |
Robust and tunable bursting requires slow positive feedback (Franci et al 2018)
|
310. |
Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017)
|
311. |
Role of the AIS in the control of spontaneous frequency of dopaminergic neurons (Meza et al 2017)
|
312. |
Roles of I(A) and morphology in AP prop. in CA1 pyramidal cell dendrites (Acker and White 2007)
|
313. |
Salamander retinal ganglian cells: morphology influences firing (Sheasby, Fohlmeister 1999)
|
314. |
Salamander retinal ganglion cell: ion channels (Fohlmeister, Miller 1997)
|
315. |
Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
|
316. |
Serotonergic modulation of Aplysia sensory neurons (Baxter et al 1999)
|
317. |
Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
|
318. |
Small world networks of Type I and Type II Excitable Neurons (Bogaard et al. 2009)
|
319. |
Spatial summation of excitatory and inhibitory inputs in pyramidal neurons (Hao et al. 2010)
|
320. |
Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017)
|
321. |
Spinal Motor Neuron: Na, K_A, and K_DR currents (Safronov, Vogel 1995)
|
322. |
Spiny Projection Neuron Ca2+ based plasticity is robust to in vivo spike train (Dorman&Blackwell)
|
323. |
State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013)
|
324. |
STDP and BDNF in CA1 spines (Solinas et al. 2019)
|
325. |
STDP depends on dendritic synapse location (Letzkus et al. 2006)
|
326. |
Stochastic 3D model of neonatal rat spinal motoneuron (Ostroumov 2007)
|
327. |
Stochastic ion channels and neuronal morphology (Cannon et al. 2010)
|
328. |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
|
329. |
Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)
|
330. |
Striatum D1 Striosome and Matrix Upstates (Prager et al., 2020)
|
331. |
Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
|
332. |
Sympathetic Preganglionic Neurone (Briant et al. 2014)
|
333. |
Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
|
334. |
Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)
|
335. |
Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)
|
336. |
Synaptic integration of an identified nonspiking interneuron in crayfish (Takashima et al 2006)
|
337. |
Synchrony by synapse location (McTavish et al. 2012)
|
338. |
Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
|
339. |
Temperature-Dependent Pyloric Pacemaker Kernel (Caplan JS et al., 2014)
|
340. |
Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005)
|
341. |
Thalamocortical augmenting response (Bazhenov et al 1998)
|
342. |
Thalamocortical relay neuron models constrained by experiment and optimization (Iavarone et al 2019)
|
343. |
The activity phase of postsynaptic neurons (Bose et al 2004)
|
344. |
The APP in C-terminal domain alters CA1 neuron firing (Pousinha et al 2019)
|
345. |
The microcircuits of striatum in silico (Hjorth et al 2020)
|
346. |
The origin of different spike and wave-like events (Hall et al 2017)
|
347. |
The relationship between two fast/slow analysis techniques for bursting oscill. (Teka et al. 2012)
|
348. |
The STN-GPe network; subthalamic nucleus, prototypic GPe, and arkypallidal GPe neurons (Kitano 2023)
|
349. |
Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
|
350. |
Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit (Ponzi et al. 2023)
|
351. |
Tonic firing in substantia gelatinosa neurons (Melnick et al 2004)
|
352. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
353. |
Updated Tritonia Swim CPG (Calin-Jagemann et al. 2007)
|
354. |
Ventromedial Thalamocortical Neuron (Bichler et al 2021)
|
355. |
Vomeronasal sensory neuron (Shimazaki et al 2006)
|
356. |
VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
|
357. |
Zebrafish Mauthner-cell model (Watanabe et al 2017)
|