Models that contain the Implementer : Schulz, Jan M [j.schulz at unibas.ch]

Re-display model names without descriptions
    Models   Description
1.  CA1 pyramidal neuron: nonlinear a5-GABAAR controls synaptic NMDAR activation (Schulz et al 2018)
The study shows that IPSCs mediated by a5-subunit containing GABAA receptors are strongly outward-rectifying generating 4-fold larger conductances above -50?mV than at rest. Experiments and modeling show that synaptic activation of these receptors can very effectively control voltage-dependent NMDA-receptor activation in a spatiotemporally controlled manner in fine dendrites of CA1 pyramidal cells. The files contain the NEURON code for Fig.8, Fig.S8 and Fig.S9 of the paper. The model is based on the model published by Bloss et al., 2017. Physiological properties of GABA synapses were modified as determined by optogenetic activation of inputs during voltage-clamp recordings in Schulz et al. 2018. Other changes include stochastic synaptic release and short-term synaptic plasticity. All changes of mechanisms and parameters are detailed in the Methods of the paper. Simulation can be run by starting start_simulation.hoc after running mknrndll. The files that model the individual figures have to be uncommented in start_simulation.hoc beforehand.
2.  DG adult-born granule cell: nonlinear a5-GABAARs control AP firing (Lodge et al, accepted)
GABA can depolarize immature neurons close to the action potential (AP) threshold in development and adult neurogenesis. Nevertheless, GABAergic synapses effectively inhibit AP firing in newborn granule cells of the adult hippocampus as early as 2 weeks post mitosis. Parvalbumin and dendrite-targeting somatostatin interneurons activate a5-subunit containing GABAA receptors (a5-GABAARs) in young neurons, which show a voltage dependent conductance profile with increasing conductance around the AP threshold. The present computational models show that the depolarized GABA reversal potential promotes NMDA receptor activation. However, the voltage-dependent conductance of a5-GABAARs in young neurons is crucial for inhibition of AP firing to generate balanced and sparse firing activity.
3.  Single compartment: nonlinear a5-GABAAR controls synaptic NMDAR activation (Schulz et al 2018)
This study shows that IPSCs mediated by a5-subunit containing GABAA receptors are strongly outward-rectifying generating 4-fold larger conductances above -50?mV than at rest. This model shows that synaptic activation of these receptors can very effectively control voltage-dependent NMDA-receptor activation. The files contain the NEURON code for Fig.6 and Fig.7. The model is a single dendritic compartment with one glutamatergic and GABAergic synapse. Physiological properties of GABA synapses were modeled as determined by optogenetic activation of inputs during voltage-clamp recordings in Schulz et al. 2018.

Re-display model names without descriptions