Models that contain the Implementer : Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr]

Re-display model names without descriptions
    Models   Description
1.  Application of a common kinetic formalism for synaptic models (Destexhe et al 1994)
Application to AMPA, NMDA, GABAA, and GABAB receptors is given in a book chapter. The reference paper synthesizes a comprehensive general description of synaptic transmission with Markov kinetic models. This framework is applicable to modeling ion channels, synaptic release, and all receptors. Please see the references for more details. A simple introduction to this method is given in a seperate paper Destexhe et al Neural Comput 6:14-18 , 1994). More information and papers at http://cns.iaf.cnrs-gif.fr/Main.html and through email: Destexhe@iaf.cnrs-gif.fr
2.  Code to calc. spike-trig. ave (STA) conduct. from Vm (Pospischil et al. 2007, Rudolph et al. 2007)
PYTHON code to calculate spike-triggered average (STA) conductances from intracellular recordings, according to the method published by Pospischil et al., J Neurophysiol, 2007. The method consists of a maximum likelihood estimate of the conductance STA, from the voltage STA (which is calculated from the data). The method was tested using models and dynamic-clamp experiments; for details, see the original publication (Pospischil et al., 2007). The first application of this method to experimental data was from intracellular recordings in awake cat cerebral cortex (Rudolph et al., 2007).
3.  Efficient Method for Computing Synaptic Conductance (Destexhe et al 1994)
A simple model of transmitter release is used to solve first order kinetic equations of neurotransmiter/receptor binding. This method is applied to a glutamate and gabaa receptor. See reference for more details. The method is extended to more complex kinetic schemes in a seperate paper (Destexhe et al J Comp Neuro 1:195-231, 1994). Application to AMPA, NMDA, GABAA, and GABAB receptors is given in a book chapter (Destexhe et al In: The Neurobiology of Computation, Edited by Bower, J., Kluwer Academic Press, Norwell MA, 1995, pp. 9-14.) More information and papers at http://cns.iaf.cnrs-gif.fr/Main.html and through email: Destexhe@iaf.cnrs-gif.fr
4.  Fluctuating synaptic conductances recreate in-vivo-like activity (Destexhe et al 2001)
This model (and experiments) reported in Destexhe, Rudolh, Fellous, and Sejnowski (2001) support the hypothesis that many of the characteristics of cortical neurons in vivo can be explained by fast glutamatergic and GABAergic conductances varying stochastically. Some of these cortical neuron characteristics of fluctuating synaptic origin are a depolarized membrane potential, the presence of high-amplitude membrane potential fluctuations, a low input resistance and irregular spontaneous firing activity. In addition, the point-conductance model could simulate the enhancement of responsiveness due to background activity. For more information please contact Alain Destexhe. email: Destexhe@iaf.cnrs-gif.fr
5.  Hodgkin-Huxley model of persistent activity in prefrontal cortex neurons (Winograd et al. 2008)
The paper demonstrate a form of graded persistent activity activated by hyperpolarization. This phenomenon is modeled based on a slow calcium regulation of Ih, similar to that introduced earlier for thalamic neurons (see Destexhe et al., J Neurophysiol. 1996). The only difference is that the calcium signal is here provided by the high-threshold calcium current (instead of the low-threshold calcium current in thalamic neurons).
6.  Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)
"We review here the development of Hodgkin- Huxley (HH) type models of cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the four most prominent electrophysiological classes of neurons. These four classes are 'fast spiking', 'regular spiking', 'intrinsically bursting' and 'low-threshold spike' cells. For each class, we fit 'minimal' HH type models to experimental data. ..."
7.  Kernel method to calculate LFPs from networks of point neurons (Telenczuk et al 2020)
"The local field potential (LFP) is usually calculated from current sources arising from transmembrane currents, in particular in asymmetric cellular morphologies such as pyramidal neurons. Here, we adopt a different point of view and relate the spiking of neurons to the LFP through efferent synaptic connections and provide a method to calculate LFPs. We show that the so-called unitary LFPs (uLFP) provide the key to such a calculation. We show experimental measurements and simulations of uLFPs in neocortex and hippocampus, for both excitatory and inhibitory neurons. We fit a “kernel” function to measurements of uLFPs, and we estimate its spatial and temporal spread by using simulations of morphologically detailed reconstructions of hippocampal pyramidal neurons. Assuming that LFPs are the sum of uLFPs generated by every neuron in the network, the LFP generated by excitatory and inhibitory neurons can be calculated by convolving the trains of action potentials with the kernels estimated from uLFPs. This provides a method to calculate the LFP from networks of spiking neurons, even for point neurons for which the LFP is not easily defined. We show examples of LFPs calculated from networks of point neurons."
8.  Kinetic synaptic models applicable to building networks (Destexhe et al 1998)
Simplified AMPA, NMDA, GABAA, and GABAB receptor models useful for building networks are described in a book chapter. One reference paper synthesizes a comprehensive general description of synaptic transmission with Markov kinetic models which is applicable to modeling ion channels, synaptic release, and all receptors. Also a simple introduction to this method is given in a seperate paper Destexhe et al Neural Comput 6:14-18 , 1994). More information and papers at http://cns.iaf.cnrs-gif.fr/Main.html and through email: Destexhe@iaf.cnrs-gif.fr
9.  Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
" ...The aim of this study was to use an established thalamocortical computer model to determine how T-type calcium channels work in concert with cortical excitability to contribute to pathogenesis and treatment response in CAE. METHODS: The model is comprised of cortical pyramidal, cortical inhibitory, thalamocortical relay, and thalamic reticular single-compartment neurons, implemented with Hodgkin-Huxley model ion channels and connected by AMPA, GABAA , and GABAB synapses. Network behavior was simulated for different combinations of T-type calcium channel conductance, inactivation time, steady state activation/inactivation shift, and cortical GABAA conductance. RESULTS: Decreasing cortical GABAA conductance and increasing T-type calcium channel conductance converted spindle to spike and wave oscillations; smaller changes were required if both were changed in concert. In contrast, left shift of steady state voltage activation/inactivation did not lead to spike and wave oscillations, whereas right shift reduced network propensity for oscillations of any type...."
10.  Low Threshold Calcium Currents in TC cells (Destexhe et al 1998)
In Destexhe, Neubig, Ulrich, and Huguenard (1998) experiments and models examine low threshold calcium current's (IT, or T-current) distribution in thalamocortical (TC) cells. Multicompartmental modeling supports the hypothesis that IT currents have a density at least several fold higher in the dendrites than the soma. The IT current contributes significantly to rebound bursts and is thought to have important network behavior consequences. See the paper for details. See also http://cns.iaf.cnrs-gif.fr Correspondance may be addressed to Alain Destexhe: Destexhe@iaf.cnrs-gif.fr
11.  Modeling local field potentials (Bedard et al. 2004)
This demo simulates a model of local field potentials (LFP) with variable resistivity. This model reproduces the low-pass frequency filtering properties of extracellular potentials. The model considers inhomogeneous spatial profiles of conductivity and permittivity, which result from the multiple media (fluids, membranes, vessels, ...) composing the extracellular space around neurons. Including non-constant profiles of conductivity enables the model to display frequency filtering properties, ie slow events such as EPSPs/IPSPs are less attenuated than fast events such as action potentials. The demo simulates Fig 6 of the paper.
12.  Networks of spiking neurons: a review of tools and strategies (Brette et al. 2007)
This package provides a series of codes that simulate networks of spiking neurons (excitatory and inhibitory, integrate-and-fire or Hodgkin-Huxley type, current-based or conductance-based synapses; some of them are event-based). The same networks are implemented in different simulators (NEURON, GENESIS, NEST, NCS, CSIM, XPP, SPLIT, MVAspike; there is also a couple of implementations in SciLab and C++). The codes included in this package are benchmark simulations; see the associated review paper (Brette et al. 2007). The main goal is to provide a series of benchmark simulations of networks of spiking neurons, and demonstrate how these are implemented in the different simulators overviewed in the paper. See also details in the enclosed file Appendix2.pdf, which describes these different benchmarks. Some of these benchmarks were based on the Vogels-Abbott model (Vogels TP and Abbott LF 2005).
13.  NN activity impact on neocortical pyr. neurons integrative properties in vivo (Destexhe & Pare 1999)
"During wakefulness, neocortical neurons are subjected to an intense synaptic bombardment. To assess the consequences of this background activity for the integrative properties of pyramidal neurons, we constrained biophysical models with in vivo intracellular data obtained in anesthetized cats during periods of intense network activity similar to that observed in the waking state. In pyramidal cells of the parietal cortex (area 5–7), synaptic activity was responsible for an approximately fivefold decrease in input resistance (Rin), a more depolarized membrane potential (Vm), and a marked increase in the amplitude of Vm fluctuations, as determined by comparing the same cells before and after microperfusion of tetrodotoxin (TTX). ..."
14.  Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001)
This package shows single-compartment models of different classes of cortical neurons, such as the "regular-spiking", "fast-spiking" and "bursting" (LTS) neurons. The mechanisms included are the Na+ and K+ currents for generating action potentials (INa, IKd), the T-type calcium current (ICaT), and a slow voltage-dependent K+ current (IM). See http://cns.fmed.ulaval.ca/alain_demos.html
15.  Python demo of the VmT method to extract conductances from single Vm traces (Pospischil et al. 2009)
This python code implements a method to estimate synaptic conductances from single membrane potential traces (the "VmT method"), as described in Pospischil et al. (2009). The method uses a maximum likelihood procedure and was successfully tested using models and dynamic-clamp experiments in vitro (see paper for details).
16.  Steady-state Vm distribution of neurons subject to synaptic noise (Rudolph, Destexhe 2005)
This package simulates synaptic background activity similar to in vivo measurements using a model of fluctuating synaptic conductances, and compares the simulations with analytic estimates. The steady-state membrane potential (Vm) distribution is calculated numerically and compared with the "extended" analytic expression provided in the reference (see this paper for details).
17.  Thalamic quiescence of spike and wave seizures (Lytton et al 1997)
A phase plane analysis of a two cell interaction between a thalamocortical neuron (TC) and a thalamic reticularis neuron (RE).
18.  Thalamic Reticular Network (Destexhe et al 1994)
Demo for simulating networks of thalamic reticular neurons (reproduces figures from Destexhe A et al 1994)
19.  Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996)
The experiments and modeling reported in this paper show how intrinsic bursting properties of RE cells may be explained by dendritic calcium currents.
20.  Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
NEURON model of oscillations in networks of thalamocortical and thalamic reticular neurons in the ferret. (more applications for a model quantitatively identical to previous DLGN model; updated for NEURON v4 and above)

Re-display model names without descriptions