| Models |
1. |
3D model of the olfactory bulb (Migliore et al. 2014)
|
2. |
A Markov model of human Cav2.3 channels and their modulation by Zn2+ (Neumaier et al 2020)
|
3. |
A model of beta-adrenergic modulation of IKs in the guinea-pig ventricle (Severi et al. 2009)
|
4. |
A nicotinic acetylcholine receptor kinetic model (Edelstein et al. 1996)
|
5. |
A single kinetic model for all human voltage-gated sodium channels (Balbi et al, 2017)
|
6. |
Action Potential initiation and backpropagation in Neocortical L5 Pyramidal Neuron (Hu et al. 2009)
|
7. |
Active dendrites shape signaling microdomains in hippocampal neurons (Basak & Narayanan 2018)
|
8. |
Allosteric gating of K channels (Horrigan et al 1999)
|
9. |
Ambient glutamate shapes AMPA receptor responses to simulated transients (Balmer et al. 2021)
|
10. |
An allosteric kinetics of NMDARs in STDP (Urakubo et al. 2008)
|
11. |
Availability of low-threshold Ca2+ current in retinal ganglion cells (Lee SC et al. 2003)
|
12. |
BCM-like synaptic plasticity with conductance-based models (Narayanan Johnston, 2010)
|
13. |
Biologically Constrained Basal Ganglia model (BCBG model) (Lienard, Girard 2014)
|
14. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
15. |
Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) NEURON
|
16. |
Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) XPP
|
17. |
CA1 interneuron: K currents (Lien et al 2002)
|
18. |
CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)
|
19. |
CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013)
|
20. |
CA1 pyramidal neuron: functional significance of axonal Kv7 channels (Shah et al. 2008)
|
21. |
CA1 pyramidal neuron: Ih current (Migliore et al. 2012)
|
22. |
CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)
|
23. |
CA1 pyramidal neurons: effects of Alzheimer (Culmone and Migliore 2012)
|
24. |
Ca2+ current versus Ca2+ channel cooperativity of exocytosis (Matveev et al. 2009)
|
25. |
CA3 Radiatum/Lacunosum-Moleculare interneuron, Ih (Anderson et al. 2011)
|
26. |
Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
|
27. |
Cardiac action potential based on Luo-Rudy phase 1 model (Luo and Rudy 1991), (Wu 2004)
|
28. |
Cell signaling/ion channel variability effects on neuronal response (Anderson, Makadia, et al. 2015)
|
29. |
Channel parameter estimation from current clamp and neuronal properties (Toth, Crunelli 2001)
|
30. |
Circadian rhythmicity shapes astrocyte morphology and neuronal function in CA1 (McCauley et al 2020)
|
31. |
CN Octopus Cell: Ih current (Bal, Oertel 2000)
|
32. |
Coincident signals in Olfactory Bulb Granule Cell spines (Aghvami et al 2019)
|
33. |
Computational modelling of channelrhodopsin-2 photocurrent characteristics (Stefanescu et al. 2013)
|
34. |
Consequences of HERG mutations in the long QT syndrome (Clancy, Rudy 2001)
|
35. |
Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
|
36. |
DG granule cell: I-A model (Beck et al 1992)
|
37. |
Double cable myelinated axon (Layer 5 pyramidal neuron; Cohen et al 2020)
|
38. |
Effect of slowly inactivating IKdr to delayed firing of action potentials (Wu et al. 2008)
|
39. |
Effects of eugenol on the firing of action potentials in NG108-15 neurons (Huang et al. 2011)
|
40. |
Efffect of propofol on potassium current in cardiac H9c2 cells (Liu et al. 2008)
|
41. |
Elementary mechanisms producing facilitation of Cav2.1 (P/Q-type) channels
|
42. |
Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016)
|
43. |
Evaluation of stochastic diff. eq. approximation of ion channel gating models (Bruce 2009)
|
44. |
Experimental and modeling studies of desensitization of P2X3 receptors (Sokolova et al. 2006)
|
45. |
Febrile seizure-induced modifications to Ih (Chen et al 2001)
|
46. |
Gap junction coupled network of striatal fast spiking interneurons (Hjorth et al. 2009)
|
47. |
Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010)
|
48. |
HMM of Nav1.7 WT and F1449V (Gurkiewicz et al. 2011)
|
49. |
Hodgkin-Huxley model of persistent activity in PFC neurons (Winograd et al. 2008) (NEURON python)
|
50. |
Hodgkin-Huxley model of persistent activity in prefrontal cortex neurons (Winograd et al. 2008)
|
51. |
Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)
|
52. |
Hodgkin–Huxley model with fractional gating (Teka et al. 2016)
|
53. |
Honey bee receptor and antennal lobe model (Chan et al 2018)
|
54. |
Hypocretin and Locus Coeruleus model neurons (Carter et al 2012)
|
55. |
Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005)
|
56. |
Intrinsic sensory neurons of the gut (Chambers et al. 2014)
|
57. |
Ion channel modeling with whole cell and a genetic algorithm (Gurkiewicz and Korngreen 2007)
|
58. |
IP3R model comparison (Hituri and Linne 2013)
|
59. |
Kinetic properties of voltage gated Na channel (Nayak and Sikdar 2007)
|
60. |
Kinetics of the P2X7 receptor as expressed in Xenopus oocytes (Riedel et al. 2007a,b)
|
61. |
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
|
62. |
Kv4.3, Kv1.4 encoded K(+) channel in heart cells (Greenstein et al 2000) (XPP)
|
63. |
Large scale model of the olfactory bulb (Yu et al., 2013)
|
64. |
Markov models of SCN1A (NaV1.1) applied to abnormal gating and epilepsy (Clancy and Kass 2004)
|
65. |
Markovian model for cardiac sodium channel (Clancy, Rudy 2002)
|
66. |
Markovian model for single-channel recordings of Ik_1 in ventricular cells (Matsuoka et al 2003)
|
67. |
Na+ Signals in olfactory bulb neurons (granule cell model) (Ona-Jodar et al. 2017)
|
68. |
Neocortical Layer I: I-A and I-K (Zhou, Hablitz 1996)
|
69. |
Neurophysiological impact of inactivation pathways in A-type K+ channels (Fineberg et al 2012)
|
70. |
Neuroprotective Role of Gap Junctions in a Neuron Astrocyte Network Model (Huguet et al 2016)
|
71. |
Nicotinic control of dopamine release in nucleus accumbens (Maex et al. 2014)
|
72. |
Novel Na current with slow de-inactivation (Tsutsui, Oka 2002)
|
73. |
Olfactory Mitral Cell: I-A and I-K currents (Wang et al 1996)
|
74. |
Olfactory Periglomerular Cells: I-h kinetics (Cadetti, Belluzzi 2001)
|
75. |
On stochastic diff. eq. models for ion channel noise in Hodgkin-Huxley neurons (Goldwyn et al. 2010)
|
76. |
Optical stimulation of a channelrhodopsin-2 positive pyramidal neuron model (Foutz et al 2012)
|
77. |
Pancreatic Beta Cell signalling pathways (Fridlyand & Philipson 2016) (MATLAB)
|
78. |
Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
|
79. |
Permeation and inactivation of CaV1.2 Ca2+ channels (Babich et al. 2007)
|
80. |
Phenomenological models of NaV1.5: Hodgkin-Huxley and kinetic formalisms (Andreozzi et al 2019)
|
81. |
Pipette and membrane patch geometry effects on GABAa currents patch-clamp exps (Moroni et al. 2011)
|
82. |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
|
83. |
Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011)
|
84. |
Pyramidal Neuron Deep: K+ kinetics (Korngreen, Sakmann 2000)
|
85. |
PyRhO: A multiscale optogenetics simulation platform (Evans et al 2016)
|
86. |
Rat alpha7 nAChR desensitization is modulated by W55 (Gay et al. 2008)
|
87. |
Response of AMPA receptor kinetic model to glutamate release distance (Allam et al., 2015)
|
88. |
Retinal Ganglion Cell: I-A (Benison et al 2001)
|
89. |
Retinal Ganglion Cell: I-CaN and I-CaL (Benison et al. 2001)
|
90. |
Retinal Ganglion Cell: I-K (Skaliora et al 1995)
|
91. |
Retinal Ganglion Cell: I-Na,t (Benison et al 2001)
|
92. |
Retinal Photoreceptor: I Potassium (Beech, Barnes 1989)
|
93. |
Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005)
|
94. |
Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005) (XPP)
|
95. |
Simulating ion channel noise in an auditory brainstem neuron model (Schmerl & McDonnell 2013)
|
96. |
Sodium currents activate without a delay (Baranauskas and Martina 2006)
|
97. |
Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017)
|
98. |
Spike propagation in dendrites with stochastic ion channels (Diba et al. 2006)
|
99. |
Spinal Motor Neuron: Na, K_A, and K_DR currents (Safronov, Vogel 1995)
|
100. |
Spontaneous firing caused by stochastic channel gating (Chow, White 1996)
|
101. |
State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013)
|
102. |
Stochastic automata network Markov model descriptors of coupled Ca2+ channels (Nguyen et al. 2005)
|
103. |
Stochastic ion channels and neuronal morphology (Cannon et al. 2010)
|
104. |
Stochastic model of the olfactory cilium transduction and adaptation (Antunes et al 2014)
|
105. |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
|
106. |
Subthreshold inact. of K channels modulates APs in bitufted interneurons (Korngreen et al 2005)
|
107. |
Synergistic inhibitory action of oxcarbazepine on INa and IK (Huang et al. 2008)
|
108. |
T channel currents (Vitko et al 2005)
|
109. |
T-type Calcium currents (McRory et al 2001)
|
110. |
Thalamic Relay Neuron: I-h (McCormick, Pape 1990)
|
111. |
Thalamic Relay Neuron: I-T current (Williams, Stuart 2000)
|
112. |
Voltage and light-sensitive Channelrhodopsin-2 model (ChR2-H134R) (Williams et al. 2013) (NEURON)
|