Models that contain the Model Concept : Simplified Models

(We define these to be ones where the 3D reconstruction of cells is replaced by one or a few compartments and/or biophysical currents are replaced by abstract ones.)
Re-display model names without descriptions
    Models   Description
1.  A CORF computational model of a simple cell that relies on LGN input (Azzopardi & Petkov 2012)
"... We propose a computational model that uses as afferent inputs the responses of model LGN cells with center-surround receptive fields (RFs) and we refer to it as a Combination of Receptive Fields (CORF) model. We use shifted gratings as test stimuli and simulated reverse correlation to explore the nature of the proposed model. We study its behavior regarding the effect of contrast on its response and orientation bandwidth as well as the effect of an orthogonal mask on the response to an optimally oriented stimulus. We also evaluate and compare the performances of the CORF and GF (Gabor Filter) models regarding contour detection, using two public data sets of images of natural scenes with associated contour ground truths. ... The proposed CORF model is more realistic than the GF model and is more effective in contour detection, which is assumed to be the primary biological role of simple cells."
2.  A dynamical model of the basal ganglia (Leblois et al 2006)
We propose a new model for the function and dysfunction of the basal ganglia (BG). The basal ganglia are a set of cerebral structures involved in motor control which dysfunction causes high-incidence pathologies such as Parkinson's disease (PD). Their precise motor functions remain unknown. The classical model of the BG that allowed for the discovery of new treatments for PD seems today outdated in several respects. Based on experimental observations, our model proposes a simple dynamical framework for the understanding of how BG may select motor programs to be executed. Moreover, we explain how this ability is lost and how tremor-related oscillations in neuronal activity may emerge in PD.
3.  A fast model of voltage-dependent NMDA Receptors (Moradi et al. 2013)
These are two or triple-exponential models of the voltage-dependent NMDA receptors. Conductance of these receptors increase voltage-dependently with a "Hodgkin and Huxley-type" gating style that is also depending on glutamate-binding. Time course of the gating of these receptors in response to glutamate are also changing voltage-dependently. Temperature sensitivity and desensitization of these receptor are also taken into account. Three previous kinetic models that are able to simulate the voltage-dependence of the NMDARs are also imported to the NMODL. These models are not temperature sensitive. These models are compatible with the "event delivery system" of NEURON. Parameters that are reported in our paper are applicable to CA1 pyramidal cell dendrites.
4.  A finite volume method for stochastic integrate-and-fire models (Marpeau et al. 2009)
"The stochastic integrate and fire neuron is one of the most commonly used stochastic models in neuroscience. Although some cases are analytically tractable, a full analysis typically calls for numerical simulations. We present a fast and accurate finite volume method to approximate the solution of the associated Fokker-Planck equation. ..."
5.  A Method for Prediction of Receptor Activation in the Simulation of Synapses (Montes et al. 2013)
A machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the activation of synaptic receptors, at very low computational cost. The method is designed to learn patterns and general principles from previous Monte Carlo simulations and to predict synapse behavior from them. The resulting procedure is accurate, automatic and can predict synapse behavior under experimental conditions that are different to the ones used during the learning phase. Since our method efficiently reduces the computational costs, it is suitable for the simulation of the vast number of synapses that occur in the mammalian brain.
6.  A model of the temporal pattern generator of C. elegans egg-laying behavior (Zhang et. al 2010)
"... We suggest that the HSN neuron is the executive neuron driving egg-laying events. We propose that the VC neurons act as "single egg counters" that inhibit HSN activity for short periods in response to individual egg-laying events. We further propose that the uv1 neuroendocrine cells are "cluster counters", which inhibit HSN activity for longer periods and are responsible for the time constant of the inactive phase. Together they form an integrated circuit that drives the clustered egg-laying pattern. ..."
7.  A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012)
These are the NEURON files for 10 different models of a reduced L5 pyramidal neuron. The parameters were obtained by automatically fitting the models to experimental data using a multi objective evolutionary search strategy. Details on the algorithm can be found at http://www.g-node.org/emoo and in Bahl et al. (2012).
8.  A simplified cerebellar Purkinje neuron (the PPR model) (Brown et al. 2011)
These models were implemented in NEURON by Sherry-Ann Brown in the laboratory of Leslie M. Loew. The files reproduce Figures 2c-f from Brown et al, 2011 "Virtual NEURON: a Strategy For Merged Biochemical and Electrophysiological Modeling".
9.  A simplified model of NMDA oscillations in lamprey locomotor neurons (Huss et al. 2008)
Using experiments in conjunction with this simplified model, we sought to understand the basic mechanisms behind NMDA-induced oscillations in lamprey locomotor neurons, specifically (a) how the oscillation frequency depends on NMDA concentration and why, and (b) what the minimal number of components for generating NMDA oscillations is (in vitro and in the model).
10.  A simulation method for the firing sequences of motor units (Jiang et al 2006)
" ... a novel model based on the Hodgkin–Huxley (HH) system is proposed, which has the ability to simulate the complex neurodynamics of the firing sequences of motor neurons. The model is presented at the cellular level and network level, and some simulation results from a simple 3-neuron network are presented to demonstrate its applications." See paper for more and details.
11.  A single column thalamocortical network model (Traub et al 2005)
To better understand population phenomena in thalamocortical neuronal ensembles, we have constructed a preliminary network model with 3,560 multicompartment neurons (containing soma, branching dendrites, and a portion of axon). Types of neurons included superficial pyramids (with regular spiking [RS] and fast rhythmic bursting [FRB] firing behaviors); RS spiny stellates; fast spiking (FS) interneurons, with basket-type and axoaxonic types of connectivity, and located in superficial and deep cortical layers; low threshold spiking (LTS) interneurons, that contacted principal cell dendrites; deep pyramids, that could have RS or intrinsic bursting (IB) firing behaviors, and endowed either with non-tufted apical dendrites or with long tufted apical dendrites; thalamocortical relay (TCR) cells; and nucleus reticularis (nRT) cells. To the extent possible, both electrophysiology and synaptic connectivity were based on published data, although many arbitrary choices were necessary.
12.  A spiking model of cortical broadcast and competition (Shanahan 2008)
"This paper presents a computer model of cortical broadcast and competition based on spiking neurons and inspired by the hypothesis of a global neuronal workspace underlying conscious information processing in the human brain. In the model, the hypothesised workspace is realised by a collection of recurrently interconnected regions capable of sustaining and disseminating a reverberating spatial pattern of activation. ..."
13.  Accurate and fast simulation of channel noise in conductance-based model neurons (Linaro et al 2011)
We introduce and operatively present a general method to simulate channel noise in conductance-based model neurons, with modest computational overheads. Our approach may be considered as an accurate generalization of previous proposal methods, to the case of voltage-, ion-, and ligand-gated channels with arbitrary complexity. We focus on the discrete Markov process descriptions, routinely employed in experimental identification of voltage-gated channels and synaptic receptors.
14.  Action potential-evoked Na+ influx are similar in axon and soma (Fleidervish et al. 2010)
"In cortical pyramidal neurons, the axon initial segment (AIS) is pivotal in synaptic integration. It has been asserted that this is because there is a high density of Na+ channels in the AIS. However, we found that action potential-associated Na+ flux, as measured by high-speed fluorescence Na+ imaging, was about threefold larger in the rat AIS than in the soma. Spike-evoked Na+ flux in the AIS and the first node of Ranvier was similar and was eightfold lower in basal dendrites. ... In computer simulations, these data were consistent with the known features of action potential generation in these neurons."
15.  Activity dependent changes in motoneurones (Dai Y et al 2002, Gardiner et al 2002)
These two papers review various experimental papers and examine the effects of activity on motoneurons in a similar 5 compartment model with 10 active conductances. Included are slow (S) and fast (F) type and fast fatigue resistant (FR) and fast fatigable (FF) models corresponding to the types of motoneurons. See papers for more and details.
16.  Adaptive exponential integrate-and-fire model (Brette & Gerstner 2005)
"We introduce a two-dimensional integrate-and-fire model that combines an exponential spike mechanism with an adaptation equation, based on recent theoretical findings. ... The model is especially reliable in high-conductance states, typical of cortical activity in vivo, in which intrinsic conductances were found to have a reduced role in shaping spike trains. These results are promising because this simple model has enough expressive power to reproduce qualitatively several electrophysiological classes described in vitro."
17.  Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
" ... we employ a novel reduction algorithm to produce a 2 compartment model of the cerebellar Purkinje neuron from a previously published, 1089 compartment model. It runs more than 400 times faster and retains the electrical behavior of the full model. So, it is more suitable for inclusion in large network models, where computational power is a limiting issue. We show the utility of this reduced model by demonstrating that it can replicate the full model’s response to alcohol, which can in turn reproduce experimental recordings from Purkinje neurons following alcohol application. ..."
18.  An oscillatory neural model of multiple object tracking (Kazanovich and Borisyuk 2006)
An oscillatory neural network model of multiple object tracking is described. The model works with a set of identical visual objects moving around the screen. At the initial stage, the model selects into the focus of attention a subset of objects initially marked as targets. Other objects are used as distractors. The model aims to preserve the initial separation between targets and distractors while objects are moving. This is achieved by a proper interplay of synchronizing and desynchronizing interactions in a multilayer network, where each layer is responsible for tracking a single target. The results of the model simulation are presented and compared with experimental data. In agreement with experimental evidence, simulations with a larger number of targets have shown higher error rates. Also, the functioning of the model in the case of temporarily overlapping objects is presented.
19.  Artificial neuron model (Izhikevich 2003, 2004, 2007)
A set of models is presented based on 2 related parameterizations to reproduce spiking and bursting behavior of multiple types of cortical neurons and thalamic neurons. These models combine the biologically plausibility of Hodgkin Huxley-type dynamics and the computational efficiency of integrate-and-fire neurons. Using these model, one can simulate tens of thousands of spiking cortical neurons in real time (1 ms resolution) using a desktop PC.
20.  Biologically-plausible models for spatial navigation (Cannon et al 2003)
Hypotheses about how parahippocampal and hippocampal structures may be involved in spatial navigation tasks are implemented in a model of a virtual rat navigating through a virtual environment in search of a food reward. The model incorporates theta oscillations to separate encoding from retrieval and yields testable predictions about the phase relations of spiking activity to theta oscillations in different parts of the hippocampal formation at various stages of the behavioral task. See paper for more and details.
21.  Biophysical and phenomenological models of spike-timing dependent plasticity (Badoual et al. 2006)
"Spike-timing dependent plasticity (STDP) is a form of associative synaptic modification which depends on the respective timing of pre- and post-synaptic spikes. The biophysical mechanisms underlying this form of plasticity are currently not known. We present here a biophysical model which captures the characteristics of STDP, such as its frequency dependency, and the effects of spike pair or spike triplet interactions. ... A simplified phenomenological model is also derived..."
22.  Ca(2+) oscillations based on Ca-induced Ca-release (Dupont et al 1991)
We consider a simple, minimal model for signal-induced Ca2+ oscillations based on Ca(2+)-induced Ca2+ release. The model takes into account the existence of two pools of intracellular Ca2+, namely, one sensitive to inositol 1,4,5 trisphosphate (InsP3) whose synthesis is elicited by the stimulus, and one insensitive to InsP3. See paper for more and details.
23.  CA1 pyramidal neuron (Ferguson et al. 2014)
Izhikevich-based models of CA1 pyramidal cells, with parameters constrained based on a whole hippocampus preparation. Strongly and weakly adapting models based on the experimental data have been developed. Code produces example model output. The code will also be made available on OSB.
24.  CA1 pyramidal neuron: depolarization block (Bianchi et al. 2012)
NEURON files from the paper: On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons by D.Bianchi, A. Marasco, A.Limongiello, C.Marchetti, H.Marie,B.Tirozzi, M.Migliore (2012). J Comput. Neurosci. In press. DOI: 10.1007/s10827-012-0383-y. Experimental findings shown that under sustained input current of increasing strength neurons eventually stop firing, entering a depolarization block. We analyze the spiking dynamics of CA1 pyramidal neuron models using the same set of ionic currents on both an accurate morphological reconstruction and on its reduction to a single-compartment. The results show the specic ion channel properties and kinetics that are needed to reproduce the experimental findings, and how their interplay can drastically modulate the neuronal dynamics and the input current range leading to depolarization block.
25.  Ca1 pyramidal neuron: reduction model (Marasco et al. 2012)
"... Here we introduce a new, automatic and fast method to map realistic neurons into equivalent reduced models running up to >40 times faster while maintaining a very high accuracy of the membrane potential dynamics during synaptic inputs, and a direct link with experimental observables. The mapping of arbitrary sets of synaptic inputs, without additional fine tuning, would also allow the convenient and efficient implementation of a new generation of large-scale simulations of brain regions reproducing the biological variability observed in real neurons, with unprecedented advances to understand higher brain functions."
26.  CA1 Pyramidal Neuron: Synaptic Scaling (London, Segev 2001)
London and Segev (2001) discuss location dependent and location independent synaptic scaling in a model CA1 neuron with passive dendrites. The freely available text is followed by a critique by Maggee and Cook who comment that the London and Segev model is accurate and informative and however needs to be augmented by active channels in dendrites. Note: the zip files for this model are stored at the nature neuroscience website - Click above Supplementary Source Code in the readme.html in the model files
27.  Cat auditory nerve model (Zilany and Bruce 2006, 2007)
"This paper presents a computational model to simulate normal and impaired auditory-nerve (AN) fiber responses in cats. The model responses match physiological data over a wider dynamic range than previous auditory models. This is achieved by providing two modes of basilar membrane excitation to the inner hair cell (IHC) rather than one. ... The model responses are consistent with a wide range of physiological data from both normal and impaired ears for stimuli presented at levels spanning the dynamic range of hearing."
28.  CellExcite: an efficient simulation environment for excitable cells (Bartocci et al. 2008)
"We have developed CellExcite, a sophisticated simulation environment for excitable-cell networks. CellExcite allows the user to sketch a tissue of excitable cells, plan the stimuli to be applied during simulation, and customize the diffusion model. CellExcite adopts Hybrid Automata (HA) as the computational model in order to efficiently capture both discrete and continuous excitable-cell behavior."
29.  Cerebellar memory consolidation model (Yamazaki et al. 2015)
"Long-term depression (LTD) at parallel fiber-Purkinje cell (PF-PC) synapses is thought to underlie memory formation in cerebellar motor learning. Recent experimental results, however, suggest that multiple plasticity mechanisms in the cerebellar cortex and cerebellar/vestibular nuclei participate in memory formation. To examine this possibility, we formulated a simple model of the cerebellum with a minimal number of components based on its known anatomy and physiology, implementing both LTD and long-term potentiation (LTP) at PF-PC synapses and mossy fiber-vestibular nuclear neuron (MF-VN) synapses. With this model, we conducted a simulation study of the gain adaptation of optokinetic response (OKR) eye movement. Our model reproduced several important aspects of previously reported experimental results in wild-type and cerebellum-related gene-manipulated mice. ..."
30.  Cerebellum Purkinje cell: dendritic ion channels activated by climbing fibre (Ait Ouares et al 2019)
"In cerebellar Purkinje neuron (PN) dendrites, the transient depolarisation associated with a climbing fibre (CF) EPSP activates voltage-gated Ca2+ channels (VGCCs), voltage-gated K+ channels (VGKCs) and Ca2+ activated SK and BK K+ channels. The resulting membrane potential (Vm) and Ca2+ transients play a fundamental role in dendritic integration and synaptic plasticity of parallel fibre inputs. Here we report a detailed investigation of the kinetics of dendritic Ca2+ and K+ channels activated by CF-EPSPs, based on optical measurements of Vm and Ca2+ transients and on a single-compartment NEURON model reproducing experimental data. ... "
31.  Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
"... In order to investigate the respective roles of synaptic interactions and nonsynaptic mechanisms in seizure transitions, we developed a computational model of hippocampal cells, involving the extracellular space, realistic dynamics of Na+, K+, Ca2+ and Cl - ions, glial uptake and extracellular diffusion mechanisms. We show that the network behavior with fixed ionic concentrations may be quite different from the neurons’ behavior when more detailed modeling of ionic dynamics is included. In particular, we show that in the extended model strong discharge of inhibitory interneurons may result in long lasting accumulation of extracellular K+, which sustains the depolarization of the principal cells and causes their pathological discharges. ..."
32.  Circadian clock model based on protein sequestration (simple version) (Kim & Forger 2012)
"… To understand the biochemical mechanisms of this timekeeping, we have developed a detailed mathematical model of the mammalian circadian clock. Our model can accurately predict diverse experimental data including the phenotypes of mutations or knockdown of clock genes as well as the time courses and relative expression of clock transcripts and proteins. Using this model, we show how a universal motif of circadian timekeeping, where repressors tightly bind activators rather than directly binding to DNA, can generate oscillations when activators and repressors are in stoichiometric balance. …"
33.  Cochlear implant models (Bruce et al. 1999a, b, c, 2000)
"In a recent set of modeling studies we have developed a stochastic threshold model of auditory nerve response to single biphasic electrical pulses (Bruce et al., 1999c) and moderate rate (less than 800 pulses per second) pulse trains (Bruce et al., 1999a). In this article we derive an analytical approximation for the single-pulse model, which is then extended to describe the pulse-train model in the case of evenly timed, uniform pulses. This renewal-process description provides an accurate and computationally efficient model of electrical stimulation of single auditory nerve fibers by a cochlear implant that may be extended to other forms of electrical neural stimulation."
34.  Coding of stimulus frequency by latency in thalamic networks (Golomb et al 2005)
The paper presents models of the rat vibrissa processing system including the posterior medial (POm) thalamus, ventroposterior medial (VPm) thalamus, and GABAB- mediated feedback inhibition from the reticular thalamic (Rt) nucleus. A clear match between the experimentally measured spike-rates and the numerically calculated rates for the full model occurs when VPm thalamus receives stronger brainstem input and weaker GABAB-mediated inhibition than POm thalamus.
35.  Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
"A major challenge in experimental data analysis is the validation of analytical methods in a fully controlled scenario where the justification of the interpretation can be made directly and not just by plausibility. ... One solution is to use simulations of realistic models to generate ground truth data. In neuroscience, creating such data requires plausible models of neural activity, access to high performance computers, expertise and time to prepare and run the simulations, and to process the output. To facilitate such validation tests of analytical methods we provide rich data sets including intracellular voltage traces, transmembrane currents, morphologies, and spike times. ... The data were generated using the largest publicly available multicompartmental model of thalamocortical network (Traub et al. 2005), with activity evoked by different thalamic stimuli."
36.  Combination sensitivity and active conductances (Carlson and Kawasaki 2006)
"... The weakly electric fish Gymnarchus discriminates the sign of the frequency difference (Df) between a neighbor’s electric organ discharge (EOD) and its own EOD by comparing temporal patterns of amplitude modulation (AM) and phase modulation (PM). Sign-selective neurons in the midbrain respond preferentially to either positive frequency differences (Df >0 selective) or negative frequency differences (Df <0 selective). To study the mechanisms of combination sensitivity, we made whole cell intracellular recordings from sign-selective midbrain neurons in vivo and recorded postsynaptic potential (PSP) responses to AM, PM, Df >0, and Df <0. ... Responses to the nonpreferred sign of Df, but not the preferred sign of Df, were substantially weaker than linear predictions, causing a significant increase in the actual degree of sign selectivity. By using various levels of current clamp and comparing our results to simple models of synaptic integration, we demonstrate that this decreased response to the nonpreferred sign of Df is caused by a reduction in voltage-dependent excitatory conductances. This finding reveals that nonlinear decoders, in the form of voltage-dependent conductances, can enhance the selectivity of single neurons for particular combinations of stimulus attributes." See paper for more and details.
37.  Comparison of full and reduced globus pallidus models (Hendrickson 2010)
In this paper, we studied what features of realistic full model activity patterns can and cannot be preserved by morphologically reduced models. To this end, we reduced the morphological complexity of a full globus pallidus neuron model possessing active dendrites and compared its spontaneous and driven responses to those of the reduced models.
38.  Competing oscillator 5-cell circuit and Parameterscape plotting (Gutierrez et al. 2013)
Our 5-cell model consists of competing fast and slow oscillators connected to a hub neuron with electrical and inhibitory synapses. Motivated by the Stomatogastric Ganglion (STG) circuit in the crab, we explored the patterns of coordination in the network as a function of the electrical coupling and inhibitory synapse strengths with the help of a novel visualization method that we call the "Parameterscape." The code submitted here will allow you to run circuit simulations and to produce a Parameterscape with the results.
39.  Competition model of pheromone ratio detection (Zavada et al. 2011)
For some closely related sympatric moth species, recognizing a specific pheromone component concentration ratio is essential for mating success. We propose and test a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which. (3) longer durations of the competition process between LNs did not result in higher recognition accuracy.
40.  Computational aspects of feedback in neural circuits (Maass et al 2006)
It had previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate ... the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceiv- able digital or analog computation on time-varying inputs. But even with noise the resulting computational model can perform a large class of biologically relevant real-time computations that require a non-fading memory. ... In particular we show that ... generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. See paper for more and details.
41.  Computer models of corticospinal neurons replicate in vitro dynamics (Neymotin et al. 2017)
"Corticospinal neurons (SPI), thick-tufted pyramidal neurons in motor cortex layer 5B that project caudally via the medullary pyramids, display distinct class-specific electrophysiological properties in vitro: strong sag with hyperpolarization, lack of adaptation, and a nearly linear frequency-current (FI) relationship. We used our electrophysiological data to produce a pair of large archives of SPI neuron computer models in two model classes: 1. Detailed models with full reconstruction; 2. Simplified models with 6 compartments. We used a PRAXIS and an evolutionary multiobjective optimization (EMO) in sequence to determine ion channel conductances. ..."
42.  Computing with neural synchrony (Brette 2012)
"... In a heterogeneous neural population, it appears that synchrony patterns represent structure or sensory invariants in stimuli, which can then be detected by postsynaptic neurons. The required neural circuitry can spontaneously emerge with spike-timing-dependent plasticity. Using examples in different sensory modalities, I show that this allows simple neural circuits to extract relevant information from realistic sensory stimuli, for example to identify a fluctuating odor in the presence of distractors. ..."
43.  Conditions of dominant effectiveness of distal dendrites (Korogod, Kulagina 1998)
The model illustrates and explains bistable spatial patterns of the current transfer effectiveness in the active dendrite with distributed (multiple) tonic excitatory, NMDA type, synaptic input.
44.  Contibutions of input and history to motoneuron output (Powers et al 2005)
"The present study presents results based on recordings of noise-driven discharge in rat hypoglossal motoneurones ... First, we show that the hyperpolarizing trough is larger in Average Current Trajectories (ACTs) calculated from spikes preceded by long interspike intervals, and minimal or absent in those based on short interspike intervals. Second, we show that the trough is present for ACTs calculated from the discharge of a threshold-crossing neurone model with a postspike after- hyperpolarization (AHP), but absent from those calculated from the discharge of a model without an AHP. We show that it is possible to represent noise-driven discharge using a two-component linear model that predicts discharge probability based on the sum of a feedback kernel and a stimulus kernel. The feedback kernel reflects the influence of prior discharge mediated by the AHP, and it increases in amplitude when AHP amplitude is increased by pharmacological manipulations. Finally, we show that the predictions of this model are virtually identical to those based on the first-order Wiener kernel. This suggests that the Wiener kernel derived from standard white-noise analysis of noise-driven discharge in neurones actually reflect the effects of both stimulus and discharge history." See paper for more and details.
45.  Dendritic signals command firing dynamics in a Cerebellar Purkinje Cell model (Genet et al. 2010)
This model endows the dendrites of a reconstructed Purkinje cells (PC) with the mechanism of Ca-dependent plateau potentials and spikes described in Genet, S., and B. Delord. 2002. A biophysical model of nonlinear dynamics underlying plateau potentials and calcium spikes in Purkinje cell dendrites. J. Neurophysiol. 88:2430–2444). It is a part of a comprehensive mathematical study suggesting that active electric signals in the dendrites of PC command epochs of firing and silencing of the PC soma.
46.  Dendritic tip geometry effects electrical properties (Tsutsui, Oka 2001)
In their teleost thalamic neuron models the authors demonstrate a dramatic increase in the passive propagation of synaptic inputs through the dendritic stalk to the soma in cells with larger tips.
47.  Distinct current modules shape cellular dynamics in model neurons (Alturki et al 2016)
" ... We hypothesized that currents are grouped into distinct modules that shape specific neuronal characteristics or signatures, such as resting potential, sub-threshold oscillations, and spiking waveforms, for several classes of neurons. For such a grouping to occur, the currents within one module should have minimal functional interference with currents belonging to other modules. This condition is satisfied if the gating functions of currents in the same module are grouped together on the voltage axis; in contrast, such functions are segregated along the voltage axis for currents belonging to different modules. We tested this hypothesis using four published example case models and found it to be valid for these classes of neurons. ..."
48.  Dopamine-modulated medium spiny neuron, reduced model (Humphries et al. 2009)
We extended Izhikevich's reduced model of the striatal medium spiny neuron (MSN) to account for dopaminergic modulation of its intrinsic ion channels and synaptic inputs. We tuned our D1 and D2 receptor MSN models using data from a recent (Moyer et al, 2007) large-scale compartmental model. Our new models capture the input-output relationships for both current injection and spiking input with remarkable accuracy, despite the order of magnitude decrease in system size. They also capture the paired pulse facilitation shown by MSNs. Our dopamine models predict that synaptic effects dominate intrinsic effects for all levels of D1 and D2 receptor activation. Our analytical work on these models predicts that the MSN is never bistable. Nonetheless, these MSN models can produce a spontaneously bimodal membrane potential similar to that recently observed in vitro following application of NMDA agonists. We demonstrate that this bimodality is created by modelling the agonist effects as slow, irregular and massive jumps in NMDA conductance and, rather than a form of bistability, is due to the voltage-dependent blockade of NMDA receptors
49.  Duration-tuned neurons from the inferior colliculus of the big brown bat (Aubie et al. 2009)
dtnet is a generalized neural network simulator written in C++ with an easy to use XML description language to generate arbitrary neural networks and then run simulations covering many different parameter values. For example, you can specify ranges of parameter values for several different connection weights and then automatically run simulations over all possible parameters. Graphing ability is built in as long as the free, open-source, graphing application GLE (http://glx.sourceforge.net/) is installed. Included in the examples folder are simulation descriptions that were used to generate the results in Aubie et al. (2009). Refer to the README file for instructions on compiling and running these examples. The most recent source code can be obtained from GitHub: <a href="https://github.com/baubie/dtnet">https://github.com/baubie/dtnet</a>
50.  Duration-tuned neurons from the inferior colliculus of vertebrates (Aubie et al. 2012)
These models reproduce the responses of duration-tuned neurons in the auditory midbrain of the big brown bat, the rat, the mouse and the frog (Aubie et al. 2012). They are written in the Python interface to NEURON and a subset of the figures from Aubie et al. (2012) are pre-set in run.py (raw data is generated and a separate graphing program must be used to visualize the results).
51.  Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005)
See README file for all info on how to run models under different tasks and simulated Parkinson's and medication conditions.
52.  Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006)
This four-compartment mitral cell exhibits endogenous subthreshold oscillations, phase resetting, and evoked spike phasing properties as described in electrophysiological studies of mitral cells. It is derived from the prior work of Davison et al (2000) and Bhalla and Bower (1993). See readme.txt for details.
53.  Dynamics of Spike Initiation (Prescott et al. 2008)
"Transduction of graded synaptic input into trains of all-or-none action potentials (spikes) is a crucial step in neural coding. Hodgkin identified three classes of neurons with qualitatively different analog-to-digital transduction properties. Despite widespread use of this classification scheme, a generalizable explanation of its biophysical basis has not been described. We recorded from spinal sensory neurons representing each class and reproduced their transduction properties in a minimal model. With phase plane and bifurcation analysis, each class of excitability was shown to derive from distinct spike initiating dynamics. Excitability could be converted between all three classes by varying single parameters; moreover, several parameters, when varied one at a time, had functionally equivalent effects on excitability. From this, we conclude that the spike-initiating dynamics associated with each of Hodgkin’s classes represent different outcomes in a nonlinear competition between oppositely directed, kinetically mismatched currents. ..."
54.  Effect of trp-like current on APs during exposure to sinusoidal voltage (Chen et al. 2010)
"... Previous work showed that magnetic electrical field-induced antinoceptive action is mediated by activation of capsaicin-sensitive sensory afferents. In this study, a modified Hodgkin-Huxley model, in which TRP-like current (I-TRP) was incorporated, was implemented to predict the firing behavior of action potentials (APs), as the model neuron was exposed to sinusoidal changes in externally-applied voltage. ... Our simulation results suggest that modulation of TRP-like channels functionally expressed in small-diameter peripheral sensory neurons should be an important mechanism through which it can contribute to the firing pattern of APs."
55.  Effects of eugenol on the firing of action potentials in NG108-15 neurons (Huang et al. 2011)
"Rationale: Eugenol (EUG, 4-allyl-2-methoxyphenol), the main component of essential oil extracted from cloves, has various uses in medicine because of its potential to modulate neuronal excitability. However, its effects on the ionic mechanisms remains incompletely understood. Objectives: We aimed to investigate EUG`s effects on neuronal ionic currents and excitability, especially on voltage-gated ion currents, and to verify the effects on a hyperexcitability-temporal lobe seizure model. Methods: With the aid of patch-clamp technology, we first investigated the effects of EUG on ionic currents in NG108-15 neuronal cells differentiated with cyclic AMP. We then used modified Pinsky-Rinzel simulation modeling to evaluate its effects on spontaneous action potentials (APs). Finally, we investigated its effects on pilocarpine-induced seizures in rats. Results: EUG depressed the transient and late components of INa in the neurons. It not only increased the degree of INa inactivation, but specifically suppressed the non-inactivating INa (INa(NI)). ... In addition, EUG diminished L-type Ca2+ current and delayed rectifier K+ current only at higher concentrations. EUG`s effects on APs frequency reduction was verified by the simulation modeling. In pilocarpine-induced seizures, the EUG-treated rats showed no shorter seizure latency but a lower seizure severity and mortality than the control rats. ... Conclusion: The synergistic blocking effects of INa and INa(NI) contributes to the main mechanism through which EUG affects the firing of neuronal APs and modulate neuronal hyperexcitability such as pilocarpine-induced temporal lobe seizures."
56.  Effects of synaptic location and timing on synaptic integration (Rall 1964)
Reproduces figures 5 - 8 from Rall, W. Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural Theory and Modeling, ed. Reiss, R.F., Palo Alto: Stanford University Press (1964).
57.  Effects of the membrane AHP on the Lateral Superior Olive (LSO) (Zhou & Colburn 2010)
This simulation study investigated how membrane afterhyperpolarization (AHP) influences spiking activity of neurons in the Lateral Superior Olive (LSO). The model incorporates a general integrate-and-fire spiking mechanism with a first-order adaptation channel. Simulations focus on differentiating the effects of GAHP, tauAHP, and input strength on (1) spike interval statistics, such as negative serial correlation and chopper onset, and (2) neural sensitivity to interaural level difference (ILD) of LSO neurons. The model simulated electrophysiological data collected in cat LSO (Tsuchitani and Johnson, 1985).
58.  Emergence of Connectivity Motifs in Networks of Model Neurons (Vasilaki, Giugliano 2014)
Recent evidence suggests that short-term dynamics of excitatory synaptic transmission is correlated to stereotypical connectivity motifs. We show that these connectivity motifs emerge in networks of model neurons, from the interactions between short-term synaptic dynamics (SD) and long-term spike-timing dependent plasticity (STDP).
59.  Estimation and Production of Time Intervals (Migliore et al 2001)
NEURON model files from the paper M. Migliore, L. Messineo, M. Cardaci, G.F. Ayala, Quantitative modeling of perception and production of time intervals, J.Neurophysiol. 86, 2754-2760 (2001). Contact michele.migliore@pa.ibf.cnr.it if you have any questions about the implementation of the model.
60.  Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
We observed a new phenomenon of resonant synchronization in computer-simulated networks of inhibitory neurons in which the synaptic current has a delayed onset, reflecting finite spike propagation and synaptic transmission times. At the resonant level of network excitation, all neurons fire synchronously and rhythmically with a period approximately four times the mean delay of the onset of the inhibitory synaptic current. ... By varying the axonal delay of the inhibitory connections, networks with a realistic synaptic kinetics can be tuned to frequencies from 40 to >200 Hz. ... We conclude that the delay of the synaptic current is the primary parameter controlling the oscillation frequency of inhibitory networks and propose that delay-induced synchronization is a mechanism for fast brain rhythms that depend on intact inhibitory synaptic transmission.
61.  Feedforward heteroassociative network with HH dynamics (Lytton 1998)
Using the original McCulloch-Pitts notion of simple on and off spike coding in lieu of rate coding, an Anderson-Kohonen artificial neural network (ANN) associative memory model was ported to a neuronal network with Hodgkin-Huxley dynamics.
62.  Firing patterns of CA3 hippocampal neurons (Soldado-Magraner et al. 2019)
" ... Here we demonstrate that the intrinsic firing patterns of CA3 neurons of the rat hippocampus in vitro undergo rapid long-term plasticity in response to a few minutes of only subthreshold synaptic conditioning. This plasticity on the spike-timing could also be induced by intrasomatic injection of subthreshold depolarizing pulses and was blocked by kinase inhibitors, indicating that discharge dynamics are modulated locally. Cluster analysis of firing patterns before and after conditioning revealed systematic transitions towards adapting and intrinsic burst behaviours, irrespective of the patterns initially exhibited by the cells. We used a conductance-based model to decide appropriate pharmacological blockade, and found that the observed transitions are likely due to recruitment of low-voltage calcium and Kv7 potassium conductances. We conclude that CA3 neurons adapt their conductance profile to the subthreshold activity of their input, so that their intrinsic firing pattern is not a static signature, but rather a reflection of their history of subthreshold activity. In this way, recurrent output from CA3 neurons may collectively shape the temporal dynamics of their embedding circuits."
63.  Fixed point attractor (Hasselmo et al 1995)
"... In the model, cholinergic suppression of synaptic transmission at excitatory feedback synapses is shown to determine the extent to which activity depends upon new features of the afferent input versus components of previously stored representations. ..." See paper for more and details. The MATLAB script demonstrates the model of fixed point attractors mediated by excitatory feedback with subtractive inhibition in a continuous firing rate model.
64.  Fluctuating synaptic conductances recreate in-vivo-like activity (Destexhe et al 2001)
This model (and experiments) reported in Destexhe, Rudolh, Fellous, and Sejnowski (2001) support the hypothesis that many of the characteristics of cortical neurons in vivo can be explained by fast glutamatergic and GABAergic conductances varying stochastically. Some of these cortical neuron characteristics of fluctuating synaptic origin are a depolarized membrane potential, the presence of high-amplitude membrane potential fluctuations, a low input resistance and irregular spontaneous firing activity. In addition, the point-conductance model could simulate the enhancement of responsiveness due to background activity. For more information please contact Alain Destexhe. email: Destexhe@iaf.cnrs-gif.fr
65.  Frog second-order vestibular neuron models (Rossert et al. 2011)
This implements spiking Hodgkin-Huxley type models of tonic and phasic second-order vestibular neurons. Models fitted to intracellular spike and membrane potential recordings from frog (Rana temporaria). The models can be stimulated by intracellular step current, frequency current (ZAP) or synaptic stimulation.
66.  Functional consequences of cortical circuit abnormalities on gamma in schizophrenia (Spencer 2009)
"Schizophrenia is characterized by cortical circuit abnormalities, which might be reflected in gamma-frequency (30–100 Hz) oscillations in the electroencephalogram. Here we used a computational model of cortical circuitry to examine the effects that neural circuit abnormalities might have on gamma generation and network excitability. The model network consisted of 1000 leaky integrateand- fi re neurons with realistic connectivity patterns and proportions of neuron types [pyramidal cells (PCs), regular-spiking inhibitory interneurons, and fast-spiking interneurons (FSIs)]. ... The results of this study suggest that a multimodal approach, combining non-invasive neurophysiological and structural measures, might be able to distinguish between different neural circuit abnormalities in schizophrenia patients. ..."
67.  Gap-junction coupled network activity depends on coupled dendrites diameter (Gansert et al. 2007)
"... We have previously shown that the amplitude of electrical signals propagating across gap-junctionally coupled passive cables is maximized at a unique diameter. This suggests that threshold-dependent signals may propagate through gap junctions for a finite range of diameters around this optimal value. Here we examine the diameter dependence of action potential propagation across model networks of dendro-dendritically coupled neurons. The neurons in these models have passive soma and dendrites and an action potential-generating axon. We show that propagation of action potentials across gap junctions occurs only over a finite range of dendritic diameters and that propagation delay depends on this diameter. ...". See paper for more and details.
68.  Generalized Carnevale-Hines algorithm (van Elburg and van Ooyen 2009)
Demo illustrating the behaviour of the integrate-and-fire model in the parameter regime relevant for the generalized event-based Carnevale-Hines integration scheme. The demo includes the improved implementation of the IntFire4 mechanism.
69.  GPi/GPe neuron models (Johnson and McIntyre 2008)
Model files for two types of non-human primate neurons used in the paper: simplified versions of 1) a GPi neuron and 2) a GPe axon collateralizing in GPi en route to STN.
70.  Grid cell oscillatory interference with noisy network oscillators (Zilli and Hasselmo 2010)
To examine whether an oscillatory interference model of grid cell activity could work if the oscillators were noisy neurons, we implemented these simulations. Here the oscillators are networks (either synaptically- or gap-junction--coupled) of one or more noisy neurons (either Izhikevich's simple model or a Hodgkin-Huxley--type biophysical model) which drive a postsynaptic cell (which may be integrate-and-fire, resonate-and-fire, or the simple model) which should fire spatially as a grid cell if the simulation is successful.
71.  High dimensional dynamics and low dimensional readouts in neural microcircuits (Haeusler et al 2006)
We investigate generic models for cortical microcircuits, i.e. recurrent circuits of integrate-and fire neurons with dynamic synapses. These complex dynamic systems subserve the amazing information processing capabilities of the cortex, but are at the present time very little understood. We analyze the transient dynamics of models for neural microcircuits from the point of view of one or two readout neurons that collapse the high dimensional transient dynamics of a neural circuit into a 1- or 2--dimensional output stream. See paper for more and details.
72.  Hippocampal context-dependent retrieval (Hasselmo and Eichenbaum 2005)
"... The model simulates the context-sensitive firing properties of hippocampal neurons including trial-specific firing during spatial alternation and trial by trial changes in theta phase precession on a linear track. ..." See paper for more and details.
73.  Hippocampus temporo-septal engram shift model (Lytton 1999)
Temporo-septal engram shift model of hippocampal memory. The model posits that memories gradually move along the hippocampus from a temporal encoding site to ever more septal sites from which they are recalled. We propose that the sense of time is encoded by the location of the engram along the temporo-septal axis.
74.  Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)
"We review here the development of Hodgkin- Huxley (HH) type models of cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the four most prominent electrophysiological classes of neurons. These four classes are 'fast spiking', 'regular spiking', 'intrinsically bursting' and 'low-threshold spike' cells. For each class, we fit 'minimal' HH type models to experimental data. ..."
75.  Hodgkin-Huxley simplifed 2D and 3D models (Lundstrom et al. 2009)
"Neuronal responses are often characterized by the firing rate as a function of the stimulus mean, or the f–I curve. We introduce a novel classification of neurons into Types A, B&#8722;, and B+ according to how f–I curves are modulated by input fluctuations. ..."
76.  Impact of dendritic size and topology on pyramidal cell burst firing (van Elburg and van Ooyen 2010)
The code provided here was written to systematically investigate which of the physical parameters controlled by dendritic morphology underlies the differences in spiking behaviour observed in different realizations of the 'ping-pong'-model. Structurally varying dendritic topology and length in a simplified model allows us to separate out the physical parameters derived from morphology underlying burst firing. To perform the parameter scans we created a new NEURON tool the MultipleRunControl which can be used to easily set up a parameter scan and write the simulation results to file. Using this code we found that not input conductance but the arrival time of the return current, as measured provisionally by the average electrotonic path length, determines whether the pyramidal cell (with ping-pong model dynamics) will burst or fire single spikes.
77.  Impedance spectrum in cortical tissue: implications for LFP signal propagation (Miceli et al. 2017)
" ... Here, we performed a detailed investigation of the frequency dependence of the conductivity within cortical tissue at microscopic distances using small current amplitudes within the typical (neuro)physiological micrometer and sub-nanoampere range. We investigated the propagation of LFPs, induced by extracellular electrical current injections via patch-pipettes, in acute rat brain slice preparations containing the somatosensory cortex in vitro using multielectrode arrays. Based on our data, we determined the cortical tissue conductivity over a 100-fold increase in signal frequency (5-500 Hz). Our results imply at most very weak frequency-dependent effects within the frequency range of physiological LFPs. Using biophysical modeling, we estimated the impact of different putative impedance spectra. Our results indicate that frequency dependencies of the order measured here and in most other studies have negligible impact on the typical analysis and modeling of LFP signals from extracellular brain recordings."
78.  Information-processing in lamina-specific cortical microcircuits (Haeusler and Maass 2006)
A major challenge for computational neuroscience is to understand the computational function of lamina-specific synaptic connection patterns in stereotypical cortical microcircuits.We approach this problem by studying ... the dynamical system defined by more realistic cortical microcircuit models as a whole and by investigating the influence that its laminar structure has on the transmission and fusion of information within this dynamical system. The circuit models that we examine consist of Hodgkin--Huxley neurons with dynamic synapses... We investigate to what extent this cortical microcircuit template supports the accumulation and fusion of information contained in generic spike inputs into layer 4 and layers 2/3 and how well it makes this information accessible to projection neurons in layers 2/3 and layer 5. ... We conclude that computer simulations of detailed lamina-specific cortical microcircuit models provide new insight into computational consequences of anatomical and physiological data. See paper for more and details.
79.  Inhibitory control by an integral feedback signal in prefrontal cortex (Miller and Wang 2006)
The prefrontal cortex (PFC) is known to be critical for inhibitory control of behavior, but the underlying mechanisms are unclear. Here, we propose that inhibitory control can be instantiated by an integral signal derived from working memory, another key function of the PFC. Speci&#64257;cally, we assume that an integrator converts excitatory input into a graded mnemonic activity that provides an inhibitory signal (integral feedback control) to upstream afferent neurons. We demonstrate this scenario in a neuronal-network model for a temporal discrimination task... See paper for details and more.
80.  Input Fluctuations effects on f-I curves (Arsiero et al. 2007)
"... We examined in vitro frequency versus current (f-I) relationships of layer 5 (L5) pyramidal cells of the rat medial prefrontal cortex (mPFC) using fluctuating stimuli. ...our results show that mPFC L5 pyramidal neurons retain an increased sensitivity to input fluctuations, whereas their sensitivity to the input mean diminishes to near zero. This implies that the discharge properties of L5 mPFC neurons are well suited to encode input fluctuations rather than input mean in their firing rates, with important consequences for information processing and stability of persistent activity at the network level."
81.  Integrate and fire model code for spike-based coincidence-detection (Heinz et al. 2001, others)
Model code relevant to three papers; two on level discrimination and one on masked detection at low frequencies.
82.  Ion concentration dynamics as a mechanism for neuronal bursting (Barreto & Cressman 2011)
"We describe a simple conductance-based model neuron that includes intra and extracellular ion concentration dynamics and show that this model exhibits periodic bursting. The bursting arises as the fast-spiking behavior of the neuron is modulated by the slow oscillatory behavior in the ion concentration variables and vice versa. By separating these time scales and studying the bifurcation structure of the neuron, we catalog several qualitatively different bursting profiles that are strikingly similar to those seen in experimental preparations. Our work suggests that ion concentration dynamics may play an important role in modulating neuronal excitability in real biological systems."
83.  Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005)
"We have developed a single-compartment, electrophysiological, hypoglossal motoneuron (HM) model based primarily on experimental data from neonatal rat HMs. The model is able to reproduce the fine features of the HM action potential: the fast afterhyperpolarization, the afterdepolarization, and the medium-duration afterhyperpolarization (mAHP). The model also reproduces the repetitive firing properties seen in neonatal HMs and replicates the neuron’s response to pharmacological experiments. The model was used to study the role of specific ionic currents in HM firing and how variations in the densities of these currents may account for age dependent changes in excitability seen in HMs. ..."
84.  Irregular oscillations produced by cyclic recurrent inhibition (Friesen, Friesen 1994)
Model of recurrent cyclic inhibition as described on p.119 of Friesen and Friesen (1994), which was slightly modified from Szekely's model (1965) of a network for producing alternating limb movements.
85.  Kinetic synaptic models applicable to building networks (Destexhe et al 1998)
Simplified AMPA, NMDA, GABAA, and GABAB receptor models useful for building networks are described in a book chapter. One reference paper synthesizes a comprehensive general description of synaptic transmission with Markov kinetic models which is applicable to modeling ion channels, synaptic release, and all receptors. Also a simple introduction to this method is given in a seperate paper Destexhe et al Neural Comput 6:14-18 , 1994). More information and papers at http://cns.iaf.cnrs-gif.fr/Main.html and through email: Destexhe@iaf.cnrs-gif.fr
86.  Large cortex model with map-based neurons (Rulkov et al 2004)
We develop a new computationally efficient approach for the analysis of complex large-scale neurobiological networks. Its key element is the use of a new phenomenological model of a neuron capable of replicating important spike pattern characteristics and designed in the form of a system of difference equations (a map). ... Interconnected with synaptic currents these model neurons demonstrated responses very similar to those found with Hodgkin-Huxley models and in experiments. We illustrate the efficacy of this approach in simulations of one- and two-dimensional cortical network models consisting of regular spiking neurons and fast spiking interneurons to model sleep and activated states of the thalamocortical system. See paper for more.
87.  Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
Mitral cells, the principal output neurons of the olfactory bulb, receive direct synaptic activation from primary sensory neurons. Shunting inhibitory inputs delivered by granule cell interneurons onto mitral cell lateral dendrites are believed to influence spike timing and underlie coordinated field potential oscillations. Lateral dendritic shunt conductances delayed spiking to a degree dependent on both their electrotonic distance and phase of onset. Recurrent inhibition significantly narrowed the distribution of mitral cell spike times, illustrating a tendency towards coordinated synchronous activity. This result suggests an essential role for early mechanisms of temporal coordination in olfaction. The model was adapted from Davison et al, 2003, but include additional noise mechanisms, long lateral dendrite, and specific synaptic point processes.
88.  Long term potentiation, LTP, protein synthesis, proteasome (Smolen et al. 2018)
The transition from early long-term potentiation (E-LTP) to late LTP (L-LTP) involves protein synthesis and degradation. L-LTP is blocked by inhibiting either protein synthesis or proteasome-dependent degradation prior to and during a tetanic stimulus, but paradoxically, L-LTP is not blocked when synthesis and degradation are inhibited simultaneously, suggesting counter-acting positive and negative proteins regulate L-LTP. To investigate this paradox, we modeled LTP at the Schaffer collateral synapse. Nine differential equations describe the levels of positive and negative regulator proteins (PP and NP) and transitions among five discrete synaptic states, a basal state (BAS), three E-LTP states (EP1, EP2, ED), and a L-LTP state (LP). A stimulus initiates the transition from BAS to EP1 and from EP1 to EP2, initiates the synthesis of PP and NP, and activates the ubiquitin-proteasome system (UPS). UPS mediates transitions of EP1 and EP2 to ED and the degradation of NP. The conversion of E-LTP to L-LTP is mediated by a PP-dependent transition from ED to LP. NP mediates reversal of EP2 to BAS. This model simulates empirical observations: 1) normal L-LTP, 2) block by either proteasome inhibitor or protein synthesis inhibitor alone, and 3) preservation of L-LTP when both inhibitors are applied together. Elements of this abstract model can be correlated with specific molecules and processes. Moreover, the model makes testable predictions, such as a unique synaptic state ED that precedes the transition to L-LTP, and a time window for the action of the UPS (during the transitions from EP1 and EP2 to ED). Tests of these predictions will provide insights into the processes of long-term synaptic plasticity.
89.  Loss of phase-locking in non-weakly coupled inhib. networks of type-I neurons (Oh and Matveev 2009)
... Here we examine the loss of synchrony caused by an increase in inhibitory coupling in networks of type-I Morris–Lecar model oscillators, which is characterized by a period-doubling cascade and leads to mode-locked states with alternation in the firing order of the two cells, as reported recently by Maran and Canavier (J Comput Nerosci, 2008) for a network of Wang-Buzsáki model neurons. Although alternating-order firing has been previously reported as a near-synchronous state, we show that the stable phase difference between the spikes of the two Morris–Lecar cells can constitute as much as 70% of the unperturbed oscillation period. Further, we examine the generality of this phenomenon for a class of type-I oscillators that are close to their excitation thresholds, and provide an intuitive geometric description of such “leap-frog” dynamics. ..."
90.  Low Threshold Calcium Currents in TC cells (Destexhe et al 1998)
In Destexhe, Neubig, Ulrich, and Huguenard (1998) experiments and models examine low threshold calcium current's (IT, or T-current) distribution in thalamocortical (TC) cells. Multicompartmental modeling supports the hypothesis that IT currents have a density at least several fold higher in the dendrites than the soma. The IT current contributes significantly to rebound bursts and is thought to have important network behavior consequences. See the paper for details. See also http://cns.iaf.cnrs-gif.fr Correspondance may be addressed to Alain Destexhe: Destexhe@iaf.cnrs-gif.fr
91.  Low Threshold Calcium Currents in TC cells (Destexhe et al 1998) (Brian)
R Brette's implementation in Brian 2 of Destexhe et al 1998's model. The author's original code is also available from ModelDB with accession number 279 (yes, was one of the first models in ModelDB)!
92.  LTP in cerebellar mossy fiber-granule cell synapses (Saftenku 2002)
We simulated synaptic transmission and modified a simple model of long-term potentiation (LTP) and long-term depression (LTD) in order to describe long-term plasticity related changes in cerebellar mossy fiber-granule cell synapses. In our model, protein autophosphorylation, leading to the maintenance of long-term plasticity, is controlled by Ca2+ entry through the NMDA receptor channels. The observed nonlinearity in the development of long-term changes of EPSP in granule cells is explained by the difference in the rate constants of two independent autocatalytic processes.
93.  Mechanisms underlying subunit independence in pyramidal neuron dendrites (Behabadi and Mel 2014)
"...Using a detailed compartmental model of a layer 5 pyramidal neuron, and an improved method for quantifying subunit independence that incorporates a more accurate model of dendritic integration, we first established that the output of each dendrite can be almost perfectly predicted by the intensity and spatial configuration of its own synaptic inputs, and is nearly invariant to the rate of bAP-mediated 'cross-talk' from other dendrites over a 100-fold range..."
94.  Minimal cell model (Av-Ron et al 1991)
The minimal cell model (MCM) is a reduced Hodgkin-Huxley model that can exhibit excitable and oscillatory behavior. It consists of two ordinary differential equations, dV/dt for membrane voltage and dW/dt for potassium activation and sodium inactivation. The MCM has a stable membrane potential of -60mV. With constant input current of 10uA/cm2, it exhibits oscillations of 150Hz. It is based on the work by FitzHugh and Rinzel.
95.  Model of calcium oscillations in olfactory cilia (Reidl et al. 2006)
Simulation of experiments on olfactory receptor neurons (ORNs). Focussing on the negative feedback that calcium (through calmodulin) has on its own influx through CNG channels, this model is able to reproduce both calcium oscillations as well as adaptation behaviour as seen in experiments done with ORNs.
96.  Model of long range transmission of gamma oscillation (Murray 2007)
"... A minimal mathematical model was developed for a preliminary study of long-range neural transmission of gamma oscillation from the CA3 to the entorhinal cortex via the CAI region of the hippocampus, a subset within a larger complex set of pathways. A module was created for each local population of neurons with common intrinsic properties and connectivity to simplify the connection process and make the model more flexible. Three modules were created using MATLAB Simulink® and tested to confirm that they transmit gamma through the system. The model also revealed that a portion of the signal from CAI to the entorhinal cortex may be lost in transmission under certain conditions."
97.  Modular grid cell responses as a basis for hippocampal remapping (Monaco and Abbott 2011)
"Hippocampal place fields, the local regions of activity recorded from place cells in exploring rodents, can undergo large changes in relative location during remapping. This process would appear to require some form of modulated global input. Grid-cell responses recorded from layer II of medial entorhinal cortex in rats have been observed to realign concurrently with hippocampal remapping, making them a candidate input source. However, this realignment occurs coherently across colocalized ensembles of grid cells (Fyhn et al., 2007). The hypothesized entorhinal contribution to remapping depends on whether this coherence extends to all grid cells, which is currently unknown. We study whether dividing grid cells into small numbers of independently realigning modules can both account for this localized coherence and allow for hippocampal remapping. ..."
98.  Modulation of temporal integration window (Migliore, Shepherd 2002)
Model simulation file from the paper M.Migliore and Gordon M. Shepherd Emerging rules for distributions of active dendritic properties underlying specific neuronal functions. Nature Rev. Neurosci. 3, 362-370 (2002).
99.  Morris-Lecar model of the barnacle giant muscle fiber (Morris, Lecar 1981)
... This paper presents an analysis of the possible modes of behavior available to a system of two noninactivating conductance mechanisms, and indicates a good correspondence to the types of behavior exhibited by barnacle fiber. The differential equations of a simple equivalent circuit for the fiber are dealt with by means of some of the mathematical techniques of nonlinear mechanics. General features of the system are (a) a propensity to produce damped or sustained oscillations over a rather broad parameter range, and (b) considerable latitude in the shape of the oscillatory potentials. It is concluded that for cells subject to changeable parameters (either from cell to cell or with time during cellular activity), a system dominated by two noninactivating conductances can exhibit varied oscillatory and bistable behavior. See paper for details.
100.  Motoneuron model of self-sustained firing after spinal cord injury (Kurian et al. 2011)
" ... During the acute-stage of spinal cord injury (SCI), the endogenous ability to generate plateaus is lost; however, during the chronic-stage of SCI, plateau potentials reappear with prolonged self-sustained firing that has been implicated in the development of spasticity. In this work, we extend previous modeling studies to systematically investigate the mechanisms underlying the generation of plateau potentials in motoneurons, including the influences of specific ionic currents, the morphological characteristics of the soma and dendrite, and the interactions between persistent inward currents and synaptic input. ..."
101.  Motoneuron simulations for counting motor units (Major and Jones 2005)
Simulations of clinical methods to count the number of motoneurons/motor units in human patients. Models include stimulation of motor axons or voluntary activation and responses are measured as muscle tension or EMG.
102.  Multimodal stimuli learning in hawkmoths (Balkenius et al. 2008)
The moth Macroglossum stellatarum can learn the color and sometimes the odor of a rewarding food source. We present data from 20 different experiments with different combinations of blue and yellow artificial flowers and the two odors, honeysuckle and lavender. ... Three computational models were tested in the same experimental situations as the real moths and their predictions were compared with the experimental data. ... Neither the Rescorla–Wagner model nor a learning model with independent learning for each stimulus component were able to explain the experimental data. We present the new hawkmoth learning model, which assumes that the moth learns a template for the sensory attributes of the rewarding stimulus. This model produces behavior that closely matches that of the real moth in all 20 experiments.
103.  Multiscale model of olfactory receptor neuron in mouse (Dougherty 2009)
Collection of XPP (.ode) files simulating the signal transduction (slow) and action potential (fast) currents in the olfactory receptor neuron of mouse. Collection contains model configured for dual odorant pulse delivery and model configured for prolonged odorant delivery. For those interested more in transduction processes, each whole cell recording model comes with a counter part file configured to show just the slow transduction current for ease of use and convenience. These transduction-only models typically run faster than the full multi-scale models but do not demonstrate action potentials.
104.  Multistability of clustered states in a globally inhibitory network (Chandrasekaran et al. 2009)
"We study a network of m identical excitatory cells projecting excitatory synaptic connections onto a single inhibitory interneuron, which is reciprocally coupled to all excitatory cells through inhibitory synapses possessing short-term synaptic depression. We find that such a network with global inhibition possesses multiple stable activity patterns with distinct periods, characterized by the clustering of the excitatory cells into synchronized sub-populations. We prove the existence and stability of n-cluster solutions in a m-cell network. ... Implications for temporal coding and memory storage are discussed."
105.  Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
We computed the steady-state activity of a large-scale model of the granular layer of the rat cerebellum. Within a few tens of milliseconds after the start of random mossy fiber input, the populations of Golgi and granule cells became entrained in a single synchronous oscillation, the basic frequency of which ranged from 10 to 40 Hz depending on the average rate of firing in the mossy fiber population. ... The synchronous, rhythmic firing pattern was robust over a broad range of biologically realistic parameter values and to parameter randomization. Three conditions, however, made the oscillations more transient and could desynchronize the entire network in the end: a very low mossy fiber activity, a very dominant excitation of Golgi cells through mossy fiber synapses (rather than through parallel fiber synapses), and a tonic activation of granule cell GABAA receptors (with an almost complete absence of synaptically induced inhibitory postsynaptic currents). The model predicts that, under conditions of strong mossy fiber input to the cerebellum, Golgi cells do not only control the strength of parallel fiber activity but also the timing of the individual spikes. Provided that their parallel fiber synapses constitute an important source of excitation, Golgi cells fire rhythmically and synchronized with granule cells over large distances along the parallel fiber axis. See paper for more and details.
106.  Neural mass model based on single cell dynamics to model pathophysiology (Zandt et al 2014)
The model code as described in "A neural mass model based on single cell dynamics to model pathophysiology, Zandt et al. 2014, Journal of Computational Neuroscience" A Neural mass model (NMM) derived from single cell dynamics in a bottom up approach. Mean and standard deviation of the firing rates in the populations are calculated. The sigmoid is derived from the single cell FI-curve, allowing for easy implementation of pathological conditions. NMM is compared with a detailed spiking network model consisting of HH neurons. NMM code in Matlab. The network model is simulated using Norns (ModelDB # 154739)
107.  Neural mass model of the neocortex under sleep regulation (Costa et al 2016)
This model generates typical human EEG patterns of sleep stages N2/N3 as well as wakefulness and REM. It further contains a sleep regulatory component, that lets the model transition between those stages independently
108.  Nicotinic control of dopamine release in nucleus accumbens (Maex et al. 2014)
Minimal model of the VTA (ventral segmental area) representing two (GABA versus dopamine) neuron populations and two subtypes of nicotinic receptors (alpha4beta2 versus alpha7). The model is used to tell apart circuit from receptor mechanisms in the nicotinic control of dopamine release and its pharmacological manipulation.
109.  Norns - Neural Network Studio (Visser & Van Gils 2014)
The Norns - Neural Network Studio is a software package for designing, simulation and analyzing networks of spiking neurons. It consists of three parts: 1. "Urd": a Matlab frontend with high-level functions for quickly defining networks 2. "Verdandi": an optimized C++ simulation environment which runs the simulation defined by Urd 3. "Skuld": an advanced Matlab graphical user interface (GUI) for visual inspection of simulated data.
110.  Numerical Integration of Izhikevich and HH model neurons (Stewart and Bair 2009)
The Parker-Sochacki method is a new technique for the numerical integration of differential equations applicable to many neuronal models. Using this method, the solution order can be adapted according to the local conditions at each time step, enabling adaptive error control without changing the integration timestep. We apply the Parker-Sochacki method to the Izhikevich ‘simple’ model and a Hodgkin-Huxley type neuron, comparing the results with those obtained using the Runge-Kutta and Bulirsch-Stoer methods.
111.  Olfactory Mitral Cell (Davison et al 2000)
A four-compartment model of a mammalian olfactory bulb mitral cell, reduced from the complex 286-compartment model described by Bhalla and Bower (1993). The compartments are soma/axon, secondary dendrites, primary dendrite shaft and primary dendrite tuft. The reduced model runs 75 or more times faster than the full model, making its use in large, realistic network models of the olfactory bulb practical.
112.  Olfactory receptor neuron model (Dougherty et al 2005)
Demonstration of ORN model by Dougherty, Wright and Yew (2005) PNAS 102: 10415-10420. This program, dwy_pnas_demo2, simulates the transduction current response of a single olfactory receptor neuron being stimulated by an odorant plume. The program is interactive in that a user can tweak parameter values and stimulus conditions. Also, users can save a configuration in a mat-file or export all aspects to a directory of text files. These text files can be read by other programs. There is also an import facility for importing text files from a directory that allows the user to specify their own data, pulses and parameters.
113.  Orientation selectivity in inhibition-dominated recurrent networks (Sadeh and Rotter, 2015)
Emergence of contrast-invariant orientation selectivity in large-scale networks of excitatory and inhibitory neurons using integrate-and-fire neuron models.
114.  Parallelizing large networks in NEURON (Lytton et al. 2016)
"Large multiscale neuronal network simulations and innovative neurotechnologies are required for development of these models requires development of new simulation technologies. We describe here the current use of the NEURON simulator with MPI (message passing interface) for simulation in the domain of moderately large networks on commonly available High Performance Computers (HPCs). We discuss the basic layout of such simulations, including the methods of simulation setup, the run-time spike passing paradigm and post-simulation data storage and data management approaches. We also compare three types of networks, ..."
115.  Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011)
Simulation and fitting of two-compartment (active soma, passive dendrite) for different classes of cortical neurons. The fitting technique indirectly matches neuronal currents derived from somatic membrane potential data rather than fitting the voltage traces directly. The method uses an analytic solution for the somatic ion channel maximal conductances given approximate models of the channel kinetics, membrane dynamics and dendrite. This approach is tested on model-derived data for various cortical neurons.
116.  Polychronization: Computation With Spikes (Izhikevich 2005)
"We present a minimal spiking network that can polychronize, that is, exhibit reproducible time-locked but not synchronous firing patterns with millisecond precision, as in synfire braids. The network consists of cortical spiking neurons with axonal conduction delays and spiketiming- dependent plasticity (STDP); a ready-to-use MATLAB code is included. It exhibits sleeplike oscillations, gamma (40 Hz) rhythms, conversion of firing rates to spike timings, and other interesting regimes. ... To our surprise, the number of coexisting polychronous groups far exceeds the number of neurons in the network, resulting in an unprecedented memory capacity of the system. ..."
117.  Population models of temporal differentiation (Tripp and Eliasmith 2010)
"Temporal derivatives are computed by a wide variety of neural circuits, but the problem of performing this computation accurately has received little theoretical study. Here we systematically compare the performance of diverse networks that calculate derivatives using cell-intrinsic adaptation and synaptic depression dynamics, feedforward network dynamics, and recurrent network dynamics. Examples of each type of network are compared by quantifying the errors they introduce into the calculation and their rejection of high-frequency input noise. ..."
118.  Prediction for the presence of voltage-gated Ca2+ channels in myelinated central axons (Brown 2003)
"The objective of this current study was to investigate whether voltage gated Ca(2+) channels are present on axons of the adult rat optic nerve (RON). Simulations of axonal excitability using a Hodgkin-Huxley based one-compartment model incorporating I(Na), I(K) and leak currents were used to predict conditions under which the potential contribution of a Ca(2+) current to an evoked action potential could be measured. ... , as predicted by the simulation, reducing the repolarizing effect of I(K) by adding the K(+) channel blocker 4-AP revealed a Ca(2+) component on the repolarizing phase of the action potential that was blocked by the Ca(2+) channel inhibitor nifedipine."
119.  Prefrontal cortical mechanisms for goal-directed behavior (Hasselmo 2005)
".. a model of prefrontal cortex function emphasizing the influence of goal-related activity on the choice of the next motor output. ... Different neocortical minicolumns represent distinct sensory input states and distinct motor output actions. The dynamics of each minicolumn include separate phases of encoding and retrieval. During encoding, strengthening of excitatory connections forms forward and reverse associations between each state, the following action, and a subsequent state, which may include reward. During retrieval, activity spreads from reward states throughout the network. The interaction of this spreading activity with a specific input state directs selection of the next appropriate action. Simulations demonstrate how these mechanisms can guide performance in a range of goal directed tasks, and provide a functional framework for some of the neuronal responses previously observed in the medial prefrontal cortex during performance of spatial memory tasks in rats."
120.  Presynaptic calcium dynamics at neuromuscular junction (Stockbridge, Moore 1984)
The diffusion of calcium is effectively reduced by the ratio of bound to free calcium. Treating the release magnitude as proportional to the fourth power of calcium concentration next to the membrane gives reasonable facilitation with very little release between spikes.
121.  Principles governing the operation of synaptic inhibition in dendrites (Gidon & Segev 2012)
A simple result of Gidon & Segev 2012 was provided where distal (off-path) inhibition is demonstrated to be more effective than proximal (on-path) inhibition in a ball and stick neuron.
122.  Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011)
"... This book provides a step-by-step account of how to model the neuron and neural circuitry to understand the nervous system at all levels, from ion channels to networks. Starting with a simple model of the neuron as an electrical circuit, gradually more details are added to include the effects of neuronal morphology, synapses, ion channels and intracellular signaling. The principle of abstraction is explained through chapters on simplifying models, and how simplified models can be used in networks. This theme is continued in a final chapter on modeling the development of the nervous system. Requiring an elementary background in neuroscience and some high school mathematics, this textbook is an ideal basis for a course on computational neuroscience."
123.  Properties of aconitine-induced block of KDR current in NG108-15 neurons (Lin et al. 2008)
"The effects of aconitine (ACO), a highly toxic alkaloid, on ion currents in differentiated NG108-15 neuronal cells were investigated in this study. ACO (0.3-30 microM) suppressed the amplitude of delayed rectifier K+ current (IK(DR)) in a concentration-dependent manner with an IC50 value of 3.1 microM. The presence of ACO enhanced the rate and extent of IK(DR) inactivation, although it had no effect on the initial activation phase of IK(DR). ... A modeled cell was designed to duplicate its inhibitory effect on spontaneous pacemaking. ... Taken together, the experimental data and simulations show that ACO can block delayed rectifier K+ channels of neurons in a concentration- and state-dependent manner. Changes in action potentials induced by ACO in neurons in vivo can be explained mainly by its blocking actions on IK(DR) and INa."
124.  Pyramidal neurons switch from integrators to resonators (Prescott et al. 2008)
During wakefulness, pyramidal neurons in the intact brain are bombarded by synaptic input that causes tonic depolarization, increased membrane conductance (i.e. shunting), and noisy fluctuations in membrane potential; by comparison, pyramidal neurons in acute slices typically experience little background input. Such differences in operating conditions can compromise extrapolation of in vitro data to explain neuronal operation in vivo. ... in slice experiments, we show that CA1 hippocampal pyramidal cells switch from integrators to resonators, i.e. from class 1 to class 2 excitability. The switch is explained by increased outward current contributed by the M-type potassium current IM ... Thus, even so-called “intrinsic” properties may differ qualitatively between in vitro and in vivo conditions.
125.  Reinforcement learning of targeted movement (Chadderdon et al. 2012)
"Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint “forearm” to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. ..."
126.  Rejuvenation model of dopamine neuron (Chan et al. 2007)
Model files for the paper C. Savio Chan, et al. 'Rejuvenation' protects neurons in mouse models of Parkinson's disease, Nature 447, 1081-1086(28 June 2007).
127.  Resource competition in growing neurites (Hjorth et al 2014)
Computer model of neurite outgrowth in a simplified neuron. A growth limiting resource is produced in the soma, transported through the neurites and consumed at the growth cones.
128.  Role of Ih in firing patterns of cold thermoreceptors (Orio et al., 2012)
" ... Here we investigated the role of Ih in cold-sensitive (CS) nerve endings, where cold sensory transduction actually takes place. Corneal CS nerve endings in mice show a rhythmic spiking activity at neutral skin temperature that switches to bursting mode when the temperature is lowered. ... Mathematical modeling shows that the firing phenotype of CS nerve endings from HCN1-/- mice can be reproduced by replacing HCN1 channels with the slower HCN2 channels rather than by abolishing Ih. We propose that Ih carried by HCN1 channels helps tune the frequency of the oscillation and the length of bursts underlying regular spiking in cold thermoreceptors, having important implications for neural coding of cold sensation. "
129.  Roles of subthalamic nucleus and DBS in reinforcement conflict-based decision making (Frank 2006)
Deep brain stimulation (DBS) of the subthalamic nucleus dramatically improves the motor symptoms of Parkinson's disease, but causes cognitive side effects such as impulsivity. This model from Frank (2006) simulates the role of the subthalamic nucleus (STN) within the basal ganglia circuitry in decision making. The STN dynamically modulates network decision thresholds in proportion to decision conflict. The STN ``hold your horses'' signal adaptively allows the system more time to settle on the best choice when multiple options are valid. The model also replicates effects in Parkinson's patients on and off DBS in experiments designed to test the model (Frank et al, 2007).
130.  Salamander retinal ganglian cells: morphology influences firing (Sheasby, Fohlmeister 1999)
Nerve impulse entrainment and other excitation and passive phenomena are analyzed for a morphologically diverse and exhaustive data set (n=57) of realistic (3-dimensional computer traced) soma-dendritic tree structures of ganglion cells in the tiger salamander (Ambystoma tigrinum) retina.
131.  Self-influencing synaptic plasticity (Tamosiunaite et al. 2007)
"... Similar to a previous study (Saudargiene et al., 2004) we employ a differential Hebbian learning rule to emulate spike-timing dependent plasticity and investigate how the interaction of dendritic and back-propagating spikes, as the post-synaptic signals, could influence plasticity. ..."
132.  Sensory feedback in an oscillatory interference model of place cell activity (Monaco et al. 2011)
Many animals use a form of dead reckoning known as 'path integration' to maintain a sense of their location as they explore the world. However, internal motion signals and the neural activity that integrates them can be noisy, leading inevitably to inaccurate position estimates. The rat hippocampus and entorhinal cortex support a flexible system of spatial representation that is critical to spatial learning and memory. The position signal encoded by this system is thought to rely on path integration, but it must be recalibrated by familiar landmarks to maintain accuracy. To explore the interaction between path integration and external landmarks, we present a model of hippocampal activity based on the interference of theta-frequency oscillations that are modulated by realistic animal movements around a track. We show that spatial activity degrades with noise, but introducing external cues based on direct sensory feedback can prevent this degradation. When these cues are put into conflict with each other, their interaction produces a diverse array of response changes that resembles experimental observations. Feedback driven by attending to landmarks may be critical to navigation and spatial memory in mammals.
133.  Sharpness of spike initiation in neurons explained by compartmentalization (Brette 2013)
"Spike initiation determines how the combined inputs to a neuron are converted to an output. Since the pioneering work of Hodgkin and Huxley, it is known that spikes are generated by the opening of sodium channels with depolarization. According to this standard theory, these channels should open gradually when the membrane potential increases, but spikes measured at the soma appear to suddenly rise from rest. This apparent contradiction has triggered a controversy about the origin of spike “sharpness.” This study shows with biophysical modelling that if sodium channels are placed in the axon rather than in the soma, they open all at once when the somatic membrane potential exceeds a critical value. This work explains the sharpness of spike initiation and provides another demonstration that morphology plays a critical role in neural function."
134.  Site of impulse initiation in a neuron (Moore et al 1983)
Examines the effect of temperature, the taper of the axon hillock, and HH channel density on antidromic spike invasion into the soma and spike initiation under dendritic stimulation.
135.  Sparsely connected networks of spiking neurons (Brunel 2000)
The dynamics of networks of sparsely connected excitatory and inhibitory integrate-and-fire neurons are studied analytically (and with simulations). The analysis reveals a rich repertoire of states, including synchronous states in which neurons fire regularly; asynchronous states with stationary global activity and very irregular individual cell activity; and states in which the global activity oscillates but individual cells fire irregularly, typically at rates lower than the global oscillation frequency. See paper for more and details.
136.  Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008)
The Spike Response Model (SRM) optimized on the experimental data in the Single-Neuron modelling Competition ( www.incf.org/community/competitions ) for edition 2007 and edition 2008. The Spike Response Model is a simplified model of neuronal excitability where current linearly integrates to an artificial threshold. After the spike, the threshold is augmented and the voltage follows a voltage kernel that is the average voltage trace during and after a spike. The parameters were chosen to best fit the observed spike times with a method outlined in Jolivet et al. (2006).
137.  Spike trains in Hodgkin–Huxley model and ISIs of acupuncture manipulations (Wang et al. 2008)
The Hodgkin-Huxley equations (HH) are parameterized by a number of parameters and shows a variety of qualitatively different behaviors depending on the parameter values. Under stimulation of an external periodic voltage, the ISIs (interspike intervals) of a HH model are investigated in this work, while the frequency of the voltage is taken as the controlling parameter. As well-known, the science of acupuncture and moxibustion is an important component of Traditional Chinese Medicine with a long history. Although there are a number of different acupuncture manipulations, the method for distinguishing them is rarely investigated. With the idea of ISI, we study the electrical signal time series at the spinal dorsal horn produced by three different acupuncture manipulations in Zusanli point and present an effective way to distinguish them.
138.  Spinal Motor Neuron (Dodge, Cooley 1973)
"The excitability of various regions of the spinal motorneuron can be specified by solving the partial differential equation of a nerve fiber whose diameter and membrane properties vary with distance. For our model geometrical factors for the myelinated axon, initial segment and cell body were derived from anatomical measurements, the dendritic tree was represented by its equivalent cylinder, and the current-voltage relations of the membrane were described by a modification of the Hodgkin-Huxley model that fits voltage-clamp data from the motorneuron. ..."
139.  Spontaneous calcium oscillations in astrocytes (Lavrentovich and Hemkin 2008)
" ... We propose here a mathematical model of how spontaneous Ca2+ oscillations arise in astrocytes. This model uses the calcium-induced calcium release and inositol cross-coupling mechanisms coupled with a receptor-independent method for producing inositol (1,4,5)-trisphosphate as the heart of the model. By computationally mimicking experimental constraints we have found that this model provides results that are qualitatively similar to experiment."
140.  STDP allows fast rate-modulated coding with Poisson-like spike trains (Gilson et al. 2011)
The model demonstrates that a neuron equipped with STDP robustly detects repeating rate patterns among its afferents, from which the spikes are generated on the fly using inhomogenous Poisson sampling, provided those rates have narrow temporal peaks (10-20ms) - a condition met by many experimental Post-Stimulus Time Histograms (PSTH).
141.  Steady-state Vm distribution of neurons subject to synaptic noise (Rudolph, Destexhe 2005)
This package simulates synaptic background activity similar to in vivo measurements using a model of fluctuating synaptic conductances, and compares the simulations with analytic estimates. The steady-state membrane potential (Vm) distribution is calculated numerically and compared with the "extended" analytic expression provided in the reference (see this paper for details).
142.  Strategy for kinase transport by microtubules to nerve terminals (Koon et al. 2014)
This model was used in the computational study of the strategies of protein transport in the context of JNK (c-JUN NH2-terminal kinase) transport along microtubules to the terminals of neuronal cells. Diffusion governs the first strategy. In the second strategy, proteins of the JNK signaling cascade bind to scaffolds and the whole protein-scaffold cargo is transported by kinesin motors along microtubules. Using the results from the simulations, the two distinct strategies for transport were compared.
143.  Synaptic integration by MEC neurons (Justus et al. 2017)
Pyramidal cells, stellate cells and fast-spiking interneurons receive running speed dependent glutamatergic input from septo-entorhinal projections. These models simulate the integration of this input by the different MEC celltypes.
144.  Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008)
"We describe a new molecular mechanism of dopamine-induced membrane protein modulation that can tune neuronal oscillation frequency to attention related gamma rhythm. This mechanism is based on the unique ability of D4 dopamine receptors (D4R) to carry out phospholipid methylation (PLM) that may affect the kinetics of ion channels. We show that by deceasing the inertia of the delayed rectifier potassium channel, a transition to 40 Hz oscillations can be achieved. ..."
145.  Synergistic inhibitory action of oxcarbazepine on INa and IK (Huang et al. 2008)
"Oxcarbazepine (OXC), one of the newer anti-epileptic drugs, has been demonstrating its efficacy on wide-spectrum neuropsychiatric disorders. ... With the aid of patch-clamp technology, we first investigated the effects of OXC on ion currents in NG108-15 neuronal cells differentiated with cyclic AMP. We found OXC ... caused a reversible reduction in the amplitude of voltage-gated Na+ current (INa) ... and produce(d) a significant prolongation in the recovery of INa inactivation. ... Moreover, OXC could suppress the amplitude of delayed rectifier K+ current (IK(DR)), with no effect on M-type K+ current (IK(M)). ... Furthermore, the simulations, based on hippocampal pyramidal neurons (Pinsky-Rinzel model) and a network of the Hodgkin-Huxley model, were analysed to investigate the effect of OXC on action potentials. Taken together, our results suggest that the synergistic blocking effects on INa and IK(DR) may contribute to the underlying mechanisms through which OXC affects neuronal function in vivo."
146.  Systems-level modeling of neuronal circuits for leech swimming (Zheng et al. 2007)
"This paper describes a mathematical model of the neuronal central pattern generator (CPG) that controls the rhythmic body motion of the swimming leech. The systems approach is employed to capture the neuronal dynamics essential for generating coordinated oscillations of cell membrane potentials by a simple CPG architecture with a minimal number of parameters. ... parameter estimation leads to predictions regarding the synaptic coupling strength and intrinsic period gradient along the nerve cord, the latter of which agrees qualitatively with experimental observations."
147.  Tag Trigger Consolidation (Clopath and Ziegler et al. 2008)
This model simulates different phases of LTP/D, i.e. the induction or early phase, the setting of synaptic tags, a trigger process for protein synthesis, and a slow transition leading to synaptic consolidation namely the late phase of synaptic plasticity. The model explains a large body of experimental data on synaptic tagging and capture, cross-tagging, and the late phases of LTP and LTD. Moreover, the model accounts for the dependence of LTP and LTD induction on voltage and presynaptic stimulation frequency.
148.  Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996)
The experiments and modeling reported in this paper show how intrinsic bursting properties of RE cells may be explained by dendritic calcium currents.
149.  The activity phase of postsynaptic neurons (Bose et al 2004)
We show, in a simplified network consisting of an oscillator inhibiting a follower neuron, how the interaction between synaptic depression and a transient potassium current in the follower neuron determines the activity phase of this neuron. We derive a mathematical expression to determine at what phase of the oscillation the follower neuron becomes active. This expression can be used to understand which parameters determine the phase of activity of the follower as the frequency of the oscillator is changed. See paper for more.
150.  Theoretical reconstrucion of field potentials and dendrodendritic synaptic...(Rall & Shepherd 1968)
This was the first application of compartmental modeling using the Rall approach to brain neurons. It combined multicompartmental representation of a mitral cell and a granule cell with the first Hodgkin-Huxley-like action potential to model antidromic activation of the mitral cell, followed by synaptic excitation of the granule cell and synaptic inhibition of the mitral cell. Combined with reconstruction of the field potentials generated around these neurons, and detailed comparisons with single cell recordings, it led to prediction of dendrodendritic interactions mediating self and lateral inhibition of the mitral cells by the granule cells. It has been regarded as the first computational model of a brain microcircuit (see also Shepherd and Brayton, 1979). Recreation of the model is pending.
151.  Theory of arachnid prey localization (Sturzl et al. 2000)
"Sand scorpions and many other arachnids locate their prey through highly sensitive slit sensilla at the tips (tarsi) of their eight legs. This sensor array responds to vibrations with stimulus-locked action potentials encoding the target direction. We present a neuronal model to account for stimulus angle determination using a population of second-order neurons, each receiving excitatory input from one tarsus and inhibition from a triad opposite to it. ..."
152.  Theory of sequence memory in neocortex (Hawkins & Ahmad 2016)
"... First we show that a neuron with several thousand synapses segregated on active dendrites can recognize hundreds of independent patterns of cellular activity even in the presence of large amounts of noise and pattern variation. We then propose a neuron model where patterns detected on proximal dendrites lead to action potentials, defining the classic receptive field of the neuron, and patterns detected on basal and apical dendrites act as predictions by slightly depolarizing the neuron without generating an action potential. By this mechanism, a neuron can predict its activation in hundreds of independent contexts. We then present a network model based on neurons with these properties that learns time-based sequences. ..."
153.  Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
"... The present study concerns a neurobiologically based computational model of the emergence of theta phase precession in which the responses of a single model CA3 pyramidal cell are examined in the context of stimulation by realistic afferent spike trains including those of place cells in entorhinal cortex, dentate gyrus, and other CA3 pyramidal cells. Spike-timing dependent plasticity in the model CA3 pyramidal cell leads to a spatially correlated associational synaptic drive that subsequently creates a spatially asymmetric expansion of the model cell’s place field. ... Through selective manipulations of the model it is possible to decompose theta phase precession in CA3 into the separate contributing factors of inheritance from upstream afferents in the dentate gyrus and entorhinal cortex, the interaction of synaptically controlled increasing afferent drive with phasic inhibition, and the theta phase difference between dentate gyrus granule cell and CA3 pyramidal cell activity."
154.  Translating network models to parallel hardware in NEURON (Hines and Carnevale 2008)
Shows how to move a working network model written in NEURON from a serial processor to a parallel machine in such a way that the final result will produce numerically identical results on either serial or parallel hardware.
155.  Vertical System (VS) tangential cells network model (Trousdale et al. 2014)
Network model of the VS tangential cell system, with 10 cells per hemisphere. Each cell is a two compartment model with one compartment for dendrites and one for the axon. The cells are coupled through axonal gap junctions. The code allows to simulate responses of the VS network to a variety of visual stimuli to investigate coding as a function of gap junction strength.
156.  Virtual Retina: biological retina simulator, with contrast gain control (Wohrer and Kornprobst 2009)
"We propose a new retina simulation software, called Virtual Retina, which transforms a video into spike trains. Our goal is twofold: Allow large scale simulations (up to 100,000 neurons) in reasonable processing times and keep a strong biological plausibility, taking into account implementation constraints. ... This software will be an evolutionary tool for neuroscientists that need realistic large-scale input spike trains in subsequent treatments, and for educational purposes."
157.  Visual physiology of the layer 4 cortical circuit in silico (Arkhipov et al 2018)
"Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo- cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. ..."

Re-display model names without descriptions