| Models |
1. |
3D model of the olfactory bulb (Migliore et al. 2014)
|
2. |
3D olfactory bulb: operators (Migliore et al, 2015)
|
3. |
A cardiac cell simulator (Puglisi and Bers 2001), applied to the QT interval (Busjahn et al 2004)
|
4. |
A computational model of a small DRG neuron to explore pain (Verma et al. 2019, 2020)
|
5. |
A detailed and fast model of extracellular recordings (Camunas-Mesa & Qurioga 2013)
|
6. |
A detailed Purkinje cell model (Masoli et al 2015)
|
7. |
A dynamic model of the canine ventricular myocyte (Hund, Rudy 2004)
|
8. |
A Fast Rhythmic Bursting Cell: in vivo cell modeling (Lee 2007)
|
9. |
A model for a nociceptor terminal and terminal tree (Barkai et al., 2020)
|
10. |
A model for interaural time difference sensitivity in the medial superior olive (Zhou et al 2005)
|
11. |
A model for pituitary GH(3) lactotroph (Wu and Chang 2005)
|
12. |
A Model of Multiple Spike Initiation Zones in the Leech C-interneuron (Crisp 2009)
|
13. |
A model of neuronal bursting using three coupled first order diff. eqs. (Hindmarsh & Rose 1984)
|
14. |
A model of neurovascular coupling and the BOLD response (Mathias et al 2017, Kenny et al 2018)
|
15. |
A model of ventral Hippocampal CA1 pyramidal neurons of Tg2576 AD mice (Spoleti et al. 2021)
|
16. |
A modified Morris-Lecar with TRPC4 & GIRK (Tian et al. 2022)
|
17. |
A multiphysics neuron model for cellular volume dynamics (Lee et al. 2011)
|
18. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (CellML)
|
19. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (SBML)
|
20. |
A sensorimotor-spinal cord model (Hoshino et al. 2022)
|
21. |
A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012)
|
22. |
A simple integrative electrophysiological model of bursting GnRH neurons (Csercsik et al. 2011)
|
23. |
A simplified cerebellar Purkinje neuron (the PPR model) (Brown et al. 2011)
|
24. |
A state-space model to quantify common input to motor neurons (Feeney et al 2017)
|
25. |
A threshold equation for action potential initiation (Platkiewicz & Brette 2010)
|
26. |
Acetylcholine Boosts Dendritic NMDA Spikes in a CA3 Pyramidal Neuron Model (Humphries et al., 2021)
|
27. |
Action Potential initiation and backpropagation in Neocortical L5 Pyramidal Neuron (Hu et al. 2009)
|
28. |
Action potential initiation in the olfactory mitral cell (Shen et al 1999)
|
29. |
Action potential of adult rat ventricle (Wang et al. 2008)
|
30. |
Action potential of mouse urinary bladder smooth muscle (Mahapatra et al 2018)
|
31. |
Action potential of striated muscle fiber (Adrian et al 1970)
|
32. |
Action potential reconstitution from measured current waveforms (Alle et al. 2009)
|
33. |
Action potential-evoked Ca2+ signals in CA1 pyramidal cell presynaptic terminals (Hamid et al 2019)
|
34. |
Action potential-evoked Na+ influx are similar in axon and soma (Fleidervish et al. 2010)
|
35. |
Action potential-evoked Na+ influx similar in axon and soma (Fleidervish et al. 2010) (Python)
|
36. |
Actions of Rotenone on ionic currents and MEPPs in Mouse Hippocampal Neurons (Huang et al 2018)
|
37. |
Active dendrites and spike propagation in a hippocampal interneuron (Saraga et al 2003)
|
38. |
Active dendritic action potential propagation (Casale & McCormick 2011)
|
39. |
Active dendritic integration in robust and precise grid cell firing (Schmidt-Hieber et al 2017)
|
40. |
Adaptive robotic control driven by a versatile spiking cerebellar network (Casellato et al. 2014)
|
41. |
Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
|
42. |
Alpha rhythm in vitro visual cortex (Traub et al 2020)
|
43. |
Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)
|
44. |
Anoxic depolarization, recovery: effect of brain regions and extracellular space (Hubel et al. 2016)
|
45. |
AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
|
46. |
AP initiation and propagation in type II cochlear ganglion cell (Hossain et al 2005)
|
47. |
AP initiation, propagation, and cortical invasion in a Layer 5 pyramidal cell (Anderson et 2018)
|
48. |
Apical Length Governs Computational Diversity of Layer 5 Pyramidal Neurons (Galloni et al 2020)
|
49. |
Artificial neuron model (Izhikevich 2003, 2004, 2007)
|
50. |
Ave. neuron model for slow-wave sleep in cortex Tatsuki 2016 Yoshida 2018 Rasmussen 2017 (all et al)
|
51. |
Axonal HH-model for temperature stimulation (Fribance et al 2016)
|
52. |
Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)
|
53. |
Axonal spheroids and conduction defects in Alzheimer’s disease (Yuan, Zhang, Tong, et al 2022)
|
54. |
Axonal subthreshold voltage signaling along hippocampal mossy fiber (Kamiya 2022)
|
55. |
BDNF morphological contributions to AP enhancement (Galati et al. 2016)
|
56. |
Behavioral time scale synaptic plasticity underlies CA1 place fields (Bittner et al. 2017)
|
57. |
Biophysically detailed model of the mouse sino-atrial node cell (Kharche et al. 2011)
|
58. |
Biophysically realistic neuron models for simulation of cortical stimulation (Aberra et al. 2018)
|
59. |
Boundary effects influence velocity in transverse propagation of cardiac APs (Sperelakis et al 2005)
|
60. |
Breakdown of accmmodation in nerve: a possible role for INAp (Hennings et al 2005)
|
61. |
Burst and tonic firing behaviour in subfornical organ (SFO) neurons (Medlock et al 2018)
|
62. |
Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
|
63. |
Bursting and oscillations in RD1 Retina driven by AII Amacrine Neuron (Choi et al. 2014)
|
64. |
Bursting in dopamine neurons (Li YX et al 1996)
|
65. |
CA1 oriens alveus interneurons: signaling properties (Minneci et al. 2007)
|
66. |
CA1 PV+ fast-firing hippocampal interneuron (Ferguson et al. 2013)
|
67. |
CA1 pyramidal cell: reconstructed axonal arbor and failures at weak gap junctions (Vladimirov 2011)
|
68. |
CA1 pyramidal neuron (Migliore et al 1999)
|
69. |
CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)
|
70. |
CA1 pyramidal neuron: action potential backpropagation (Gasparini & Migliore 2015)
|
71. |
CA1 pyramidal neuron: conditional boosting of dendritic APs (Watanabe et al 2002)
|
72. |
CA1 pyramidal neuron: dendritic Ca2+ inhibition (Muellner et al. 2015)
|
73. |
CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)
|
74. |
CA1 pyramidal neuron: dendritic spike initiation (Gasparini et al 2004)
|
75. |
CA1 pyramidal neuron: effects of Ih on distal inputs (Migliore et al 2004)
|
76. |
CA1 pyramidal neuron: effects of Lamotrigine on dendritic excitability (Poolos et al 2002)
|
77. |
CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013)
|
78. |
CA1 pyramidal neuron: functional significance of axonal Kv7 channels (Shah et al. 2008)
|
79. |
CA1 pyramidal neuron: integration of subthreshold inputs from PP and SC (Migliore 2003)
|
80. |
CA1 pyramidal neuron: rebound spiking (Ascoli et al.2010)
|
81. |
CA1 pyramidal neuron: schizophrenic behavior (Migliore et al. 2011)
|
82. |
CA1 pyramidal neuron: signal propagation in oblique dendrites (Migliore et al 2005)
|
83. |
CA1 Pyramidal Neuron: slow Na+ inactivation (Migliore 1996)
|
84. |
CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)
|
85. |
CA1 pyramidal neurons: binding properties and the magical number 7 (Migliore et al. 2008)
|
86. |
CA1 pyramidal neurons: effect of external electric field from power lines (Cavarretta et al. 2014)
|
87. |
CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)
|
88. |
CA1 pyramidal neurons: effects of Alzheimer (Culmone and Migliore 2012)
|
89. |
CA1 SOM+ (OLM) hippocampal interneuron (Ferguson et al. 2015)
|
90. |
CA1 stratum radiatum interneuron multicompartmental model (Katona et al. 2011)
|
91. |
CA3 pyramidal neuron (Lazarewicz et al 2002)
|
92. |
CA3 pyramidal neuron (Safiulina et al. 2010)
|
93. |
CA3 pyramidal neuron: firing properties (Hemond et al. 2008)
|
94. |
CA3 pyramidal neurons: Kv1.2 mediates modulation of cortical inputs (Hyun et al., 2015)
|
95. |
Caffeine-induced electrical oscillations in Aplysia neurons (Komendantov, Kononenko 2000)
|
96. |
Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011)
|
97. |
Calcium spikes in basal dendrites (Kampa and Stuart 2006)
|
98. |
Cancelling redundant input in ELL pyramidal cells (Bol et al. 2011)
|
99. |
Cardiac action potential based on Luo-Rudy phase 1 model (Luo and Rudy 1991), (Wu 2004)
|
100. |
Cardiac action potentials and pacemaker activity of sinoatrial node (DiFrancesco & Noble 1985)
|
101. |
Cardiac Atrial Cell (Courtemanche et al 1998)
|
102. |
Cardiac Atrial Cell (Courtemanche et al 1998) (C++)
|
103. |
Cardiac models of circadian rhythms in early afterdepolarizations & arrhythmias (Diekman & Wei 2021)
|
104. |
Cell signaling/ion channel variability effects on neuronal response (Anderson, Makadia, et al. 2015)
|
105. |
Cellular classes revealed by heartbeat-related modulation of extracellular APs (Mosher et al 2020)
|
106. |
Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)
|
107. |
Cerebellar Golgi cells, dendritic processing, and synaptic plasticity (Masoli et al 2020)
|
108. |
Cerebellar granule cell (Masoli et al 2020)
|
109. |
Cerebellar purkinje cell (De Schutter and Bower 1994)
|
110. |
Cerebellar purkinje cell: interacting Kv3 and Na currents influence firing (Akemann, Knopfel 2006)
|
111. |
Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001)
|
112. |
Cerebellar Purkinje Cell: resurgent Na current and high frequency firing (Khaliq et al 2003)
|
113. |
Cerebellar stellate cells: changes in threshold, latency and frequency of firing (Mitry et al 2020)
|
114. |
Channel density variability among CA1 neurons (Migliore et al. 2018)
|
115. |
CN bushy, stellate neurons (Rothman, Manis 2003)
|
116. |
CN bushy, stellate neurons (Rothman, Manis 2003) (Brian 2)
|
117. |
CN bushy, stellate neurons (Rothman, Manis 2003) (Brian)
|
118. |
Combining modeling, deep learning for MEA neuron localization, classification (Buccino et al 2018)
|
119. |
Comparison of full and reduced globus pallidus models (Hendrickson 2010)
|
120. |
Compartmental model of a mitral cell (Popovic et al. 2005)
|
121. |
Compartmentalization of GABAergic inhibition by dendritic spines (Chiu et al. 2013)
|
122. |
Competition for AP initiation sites in a circuit controlling simple learning (Cruz et al. 2007)
|
123. |
Complex CA1-neuron to study AP initiation (Wimmer et al. 2010)
|
124. |
Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018)
|
125. |
Computational neuropharmacology of CA1 pyramidal neuron (Ferrante et al. 2008)
|
126. |
Conduction in uniform myelinated axons (Moore et al 1978)
|
127. |
Contribution of ATP-sensitive potassium channels in the neuronal network (Huang et al. 2009)
|
128. |
Contribution of the axon initial segment to APs recorded extracellularly (Telenczuk et al 2018)
|
129. |
Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)
|
130. |
Cortical Layer 5b pyr. cell with [Na+]i mechanisms, from Hay et al 2011 (Zylbertal et al 2017)
|
131. |
Cortical pyramidal neuron, phase response curve (Stiefel et al 2009)
|
132. |
Criticality,degeneracy in injury-induced changes in primary afferent excitability (Ratte et al 2014)
|
133. |
Current flow during PAP in squid axon at diameter change (Joyner et al 1980)
|
134. |
D2 dopamine receptor modulation of interneuronal activity (Maurice et al. 2004)
|
135. |
DBS of a multi-compartment model of subthalamic nucleus projection neurons (Miocinovic et al. 2006)
|
136. |
Demyelinated and remyelinating axon conductances (Hines, Shrager 1991)
|
137. |
Dendritic action potentials and computation in human layer 2/3 cortical neurons (Gidon et al 2020)
|
138. |
Dendritic action potentials and computation in human layer 2/3 cortical neurons (Gidon et al 2020)
|
139. |
Dendritic Na inactivation drives a decrease in ISI (Fernandez et al 2005)
|
140. |
Dendritic Na+ spike initiation and backpropagation of APs in active dendrites (Nevian et al. 2007)
|
141. |
Dendritic properties control energy efficiency of APs in cortical pyramidal cells (Yi et al 2017)
|
142. |
Dendritic signals command firing dynamics in a Cerebellar Purkinje Cell model (Genet et al. 2010)
|
143. |
Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo (Smith et al 2013)
|
144. |
Dendritica (Vetter et al 2001)
|
145. |
Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
|
146. |
Dentate Gyrus Feed-forward inhibition (Ferrante et al. 2009)
|
147. |
Dentate gyrus network model (Santhakumar et al 2005)
|
148. |
Dependence of neuronal firing on astroglial membrane transport mechanisms (Oyehaug et al 2012)
|
149. |
Determinants of the intracellular and extracellular waveforms in DA neurons (Lopez-Jury et al 2018)
|
150. |
DG adult-born granule cell: nonlinear a5-GABAARs control AP firing (Lodge et al, accepted)
|
151. |
Diameter, Myelination and Na/K pump interactions affect axonal resilience to high frequency spiking
|
152. |
Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites (Golding et al 2001)
|
153. |
Dipolar extracellular potentials generated by axonal projections (McColgan et al 2017)
|
154. |
Dopamine neuron of the vent. periaqu. gray and dors. raphe nucleus (vlPAG/DRN) (Dougalis et al 2017)
|
155. |
Dopamine-modulated medium spiny neuron, reduced model (Humphries et al. 2009)
|
156. |
Dopaminergic cell bursting model (Kuznetsov et al 2006)
|
157. |
Dopaminergic subtantia nigra neuron (Moubarak et al 2019)
|
158. |
Dorsal root ganglion (DRG) neuronal model (Amir, Devor 2003)
|
159. |
Dorsal root ganglion (primary somatosensory) neurons (Rho & Prescott 2012)
|
160. |
Double cable myelinated axon (Layer 5 pyramidal neuron; Cohen et al 2020)
|
161. |
DRG neuron models investigate how ion channel levels regulate firing properties (Zheng et al 2019)
|
162. |
Dynamical assessment of ion channels during in vivo-like states (Guet-McCreight & Skinner 2020)
|
163. |
Dynamics of Spike Initiation (Prescott et al. 2008)
|
164. |
Effect of riluzole on action potential in cultured human skeletal muscle cells (Wang YJ et al. 2008)
|
165. |
Effect of slowly inactivating IKdr to delayed firing of action potentials (Wu et al. 2008)
|
166. |
Effect of trp-like current on APs during exposure to sinusoidal voltage (Chen et al. 2010)
|
167. |
Effects of Acetyl-L-carnitine on neural transmission (Lombardo et al 2004)
|
168. |
Effects of Dopamine Modulation and KIR Inactivation in NAc Medium Spiny Neurons (Steephen 2011)
|
169. |
Effects of electric fields on cognitive functions (Migliore et al 2016)
|
170. |
Effects of eugenol on the firing of action potentials in NG108-15 neurons (Huang et al. 2011)
|
171. |
Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
|
172. |
Effects of neural morphology on global and focal NMDA-spikes (Poleg-Polsky 2015)
|
173. |
Effects of the membrane AHP on the Lateral Superior Olive (LSO) (Zhou & Colburn 2010)
|
174. |
Enhanced Excitability in Hermissenda: modulation by 5-HT (Cai et al 2003)
|
175. |
Enhancing the HH eqs: simulations based on the first publication in Biophys J (Moore 2015)
|
176. |
Ephaptic interactions in olfactory nerve (Bokil et al 2001)
|
177. |
Evaluation of passive component of propagating AP in mossy fiber axons (Ohura & Kamiya 2018)
|
178. |
Excitability of DA neurons and their regulation by synaptic input (Morozova et al. 2016a, 2016b)
|
179. |
Excitability of PFC Basal Dendrites (Acker and Antic 2009)
|
180. |
Excitability of the soma in central nervous system neurons (Safronov et al 2000)
|
181. |
Excitation-contraction coupling in an integrative heart cell model (Greenstein et al 2006)
|
182. |
Excitatory synaptic interactions in pyramidal neuron dendrites (Behabadi et al. 2012)
|
183. |
Extracellular fields for a three-dimensional network of cells using NEURON (Appukuttan et al 2017)
|
184. |
Fast sodium channel gating in mossy fiber axons (Schmidt-Hieber et al. 2010)
|
185. |
Fast-spiking cortical interneuron (Golomb et al. 2007)
|
186. |
Febrile seizure-induced modifications to Ih (Chen et al 2001)
|
187. |
Firing neocortical layer V pyramidal neuron (Reetz et al. 2014; Stadler et al. 2014)
|
188. |
Frog second-order vestibular neuron models (Rossert et al. 2011)
|
189. |
Functional impact of dendritic branch point morphology (Ferrante et al., 2013)
|
190. |
Functional structure of mitral cell dendritic tuft (Djurisic et al. 2008)
|
191. |
Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008)
|
192. |
Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010)
|
193. |
Glutamate mediated dendritic and somatic plateau potentials in cortical L5 pyr cells (Gao et al '20)
|
194. |
GPi/GPe neuron models (Johnson and McIntyre 2008)
|
195. |
Granule Cells of the Olfactory Bulb (Simoes_De_Souza et al. 2014)
|
196. |
H-currents effect on the fluctuation of gamma/beta oscillations (Avella-Gonzalez et al., 2015)
|
197. |
HERG K+ channels spike-frequency adaptation (Chiesa et al 1997)
|
198. |
HH model of SCN neurons including a transient K+ channel (Bano-Otalora et al 2021)
|
199. |
High frequency oscillations induced in three gap-junction coupled neurons (Tseng et al. 2008)
|
200. |
Hippocampal basket cell gap junction network dynamics (Saraga et al. 2006)
|
201. |
Hippocampal CA1 microcircuit model including somatic and dendritic inhibition
|
202. |
Hippocampal CA3 thorny and a-thorny principal neuron models (Linaro et al in review)
|
203. |
Hippocampal Mossy Fiber bouton: presynaptic KV7 channel function (Martinello et al 2019)
|
204. |
Hippocampus CA1 pyramidal model with Na channel exhibiting slow inactivation (Menon et al. 2009)
|
205. |
Hodgkin–Huxley model with fractional gating (Teka et al. 2016)
|
206. |
Homosynaptic plasticity in the tail withdrawal circuit (TWC) of Aplysia (Baxter and Byrne 2006)
|
207. |
Human L2/3 pyramidal cells with low Cm values (Eyal et al. 2016)
|
208. |
Human somatosensory and motor axon pair to compare thresholds (Gaines et al 2018)
|
209. |
Hyperbolic model (Daneshzand et al 2017)
|
210. |
Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005)
|
211. |
I A in Kenyon cells resemble Shaker currents (Pelz et al 1999)
|
212. |
IA and IT interact to set first spike latency (Molineux et al 2005)
|
213. |
Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)
|
214. |
Impact of fast Na channel inact. on AP threshold & synaptic integration (Platkiewicz & Brette 2011)
|
215. |
INa and IKv4.3 heterogeneity in canine LV myocytes (Flaim et al 2006)
|
216. |
Information transmission in cerebellar granule cell models (Rossert et al. 2014)
|
217. |
Inhibition of bAPs and Ca2+ spikes in a multi-compartment pyramidal neuron model (Wilmes et al 2016)
|
218. |
Input Fluctuations effects on f-I curves (Arsiero et al. 2007)
|
219. |
Interneuron Specific 3 Interneuron Model (Guet-McCreight et al, 2016)
|
220. |
Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007)
|
221. |
Intrinsic sensory neurons of the gut (Chambers et al. 2014)
|
222. |
Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005)
|
223. |
Ionic mechanisms of dendritic spikes (Almog and Korngreen 2014)
|
224. |
Kenyon cells in the honeybee (Wustenberg et al 2004)
|
225. |
L5 pyramidal neuron myelination increases analog-digital facilitation extent (Zbili & Debanne 2020)
|
226. |
Large scale model of the olfactory bulb (Yu et al., 2013)
|
227. |
Layer 5 Pyramidal Neuron (Shai et al., 2015)
|
228. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
229. |
Layer-specific pyramidal cell props underlie diverse ACC motor + limbic networks (Medalla et al '21)
|
230. |
Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)
|
231. |
Leech heart interneuron network model (Hill et al 2001, 2002)
|
232. |
Leech Mechanosensory Neurons: Synaptic Facilitation by Reflected APs (Baccus 1998)
|
233. |
Lillie Transition: onset of saltatory conduction in myelinating axons (Young et al. 2013)
|
234. |
Low Threshold Calcium Currents in TC cells (Destexhe et al 1998)
|
235. |
Low Threshold Calcium Currents in TC cells (Destexhe et al 1998) (Brian)
|
236. |
Mammalian Ventricular Cell (Beeler and Reuter 1977)
|
237. |
Mathematical model for windup (Aguiar et al. 2010)
|
238. |
MCCAIS model (multicompartmental cooperative AIS) (Öz et al 2015)
|
239. |
Measuring neuronal identification quality in ensemble recordings (isoitools) (Neymotin et al. 2011)
|
240. |
Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)
|
241. |
Mechanisms of magnetic stimulation of central nervous system neurons (Pashut et al. 2011)
|
242. |
Mechanisms of very fast oscillations in axon networks coupled by gap junctions (Munro, Borgers 2010)
|
243. |
Mechanisms underlying subunit independence in pyramidal neuron dendrites (Behabadi and Mel 2014)
|
244. |
Medial vestibular neuron models (Quadroni and Knopfel 1994)
|
245. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
246. |
Midbrain torus semicircularis neuron model (Aumentado-Armstrong et al. 2015)
|
247. |
Minimal cell model (Av-Ron et al 1991)
|
248. |
Model of arrhythmias in a cardiac cells network (Casaleggio et al. 2014)
|
249. |
Model of repetitive firing in Grueneberg ganglion olfactory neurons (Liu et al., 2012)
|
250. |
Modeling conductivity profiles in the deep neocortical pyramidal neuron (Wang K et al. 2013)
|
251. |
Modeling dendritic spikes and plasticity (Bono and Clopath 2017)
|
252. |
Modeling interactions in Aplysia neuron R15 (Yu et al 2004)
|
253. |
Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
|
254. |
Models of Na channels from a paper on the PKC control of I Na,P (Baker 2005)
|
255. |
Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)
|
256. |
Morphological determinants of action potential dynamics in substantia nigra (Moubarak et al 2022)
|
257. |
Multi-comp. CA1 O-LM interneuron model with varying dendritic Ih distributions (Sekulic et al 2015)
|
258. |
Multicompartmental cerebellar granule cell model (Diwakar et al. 2009)
|
259. |
Multiple dynamical modes of thalamic relay neurons (Wang XJ 1994)
|
260. |
Multiplexed coding in Purkinje neuron dendrites (Zang and De Schutter 2021)
|
261. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
262. |
Multiscale model of olfactory receptor neuron in mouse (Dougherty 2009)
|
263. |
MultiScale Optimized Neuronal Intramembrane Cavitation (SONIC) model (Lemaire et al. 2019)
|
264. |
Myelinated axon conduction velocity (Brill et al 1977)
|
265. |
MyFirstNEURON (Houweling, Sejnowski 1997)
|
266. |
Na+ channel dependence of AP initiation in cortical pyramidal neuron (Kole et al. 2008)
|
267. |
Na+ Signals in olfactory bulb neurons (granule cell model) (Ona-Jodar et al. 2017)
|
268. |
NAcc medium spiny neuron: effects of cannabinoid withdrawal (Spiga et al. 2010)
|
269. |
Nav1.6 sodium channel model in globus pallidus neurons (Mercer et al. 2007)
|
270. |
Neocort. pyramidal cells subthreshold somatic voltage controls spike propagation (Munro Kopell 2012)
|
271. |
Nerve terminal currents at lizard neuromuscular junction (Lindgren, Moore 1989)
|
272. |
Neural recruitment during synchronous multichannel microstimulation (Hokanson et al 2018)
|
273. |
Neurite: electrophysiological-mechanical coupling simulation framework (Garcia-Grajales et al 2015)
|
274. |
NeuroMatic: software for acquisition, analysis and simulation of e-phys data (Rothman & Silver 2018)
|
275. |
Nigral dopaminergic neurons: effects of ethanol on Ih (Migliore et al. 2008)
|
276. |
NMDA spikes in basal dendrites of L5 pyramidal neurons (Polsky et al. 2009)
|
277. |
Nodes of Ranvier with left-shifted Nav channels (Boucher et al. 2012)
|
278. |
Norns - Neural Network Studio (Visser & Van Gils 2014)
|
279. |
Novel Na current with slow de-inactivation (Tsutsui, Oka 2002)
|
280. |
O-LM interneuron model (Lawrence et al. 2006)
|
281. |
Olfactory bulb cluster formation (Migliore et al. 2010)
|
282. |
Olfactory bulb granule cell: effects of odor deprivation (Saghatelyan et al 2005)
|
283. |
Olfactory bulb mitral and granule cell column formation (Migliore et al. 2007)
|
284. |
Olfactory bulb mitral and granule cell: dendrodendritic microcircuits (Migliore and Shepherd 2008)
|
285. |
Olfactory bulb mitral cell: synchronization by gap junctions (Migliore et al 2005)
|
286. |
Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)
|
287. |
Olfactory Mitral cell: AP initiation modes (Chen et al 2002)
|
288. |
On stochastic diff. eq. models for ion channel noise in Hodgkin-Huxley neurons (Goldwyn et al. 2010)
|
289. |
Opposing roles for Na+/Ca2+ exchange and Ca2+-activated K+ currents during STDP (O`Halloran 2020)
|
290. |
Optical stimulation of a channelrhodopsin-2 positive pyramidal neuron model (Foutz et al 2012)
|
291. |
Origin of heterogeneous spiking patterns in spinal dorsal horn neurons (Balachandar & Prescott 2018)
|
292. |
Paradoxical effect of fAHP amplitude on gain in dentate gyrus granule cells (Jaffe & Brenner 2018)
|
293. |
Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)
|
294. |
Peripheral nerve:Morris-Lecar implementation of (Schwarz et al 1995)
|
295. |
Persistent Spiking in ACC Neurons (Ratte et al 2018)
|
296. |
Phase-locking analysis with transcranial magneto-acoustical stimulation (Yuan et al 2017)
|
297. |
Prediction for the presence of voltage-gated Ca2+ channels in myelinated central axons (Brown 2003)
|
298. |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
|
299. |
Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011)
|
300. |
Properties of aconitine-induced block of KDR current in NG108-15 neurons (Lin et al. 2008)
|
301. |
Proximal inhibition of Renshaw cells (Bui et al 2005)
|
302. |
Purkinje neuron network (Zang et al. 2020)
|
303. |
PyPNS: Multiscale Simulation of a Peripheral Nerve in Python (Lubba et al 2018)
|
304. |
Pyramidal neuron coincidence detection tuned by dendritic branching pattern (Schaefer et al 2003)
|
305. |
Pyramidal neuron conductances state and STDP (Delgado et al. 2010)
|
306. |
Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001)
|
307. |
Rat LGN Thalamocortical Neuron (Connelly et al 2015, 2016)
|
308. |
Rat phrenic motor neuron (Amini et al 2004)
|
309. |
Realistic amplifier model (Oláh et al. 2021)
|
310. |
Realistic barrel cortical column - Matlab (Huang et al., 2022)
|
311. |
Realistic barrel cortical column - NetPyNE (Huang et al., 2022)
|
312. |
Reduced-morphology model of CA1 pyramidal cells optimized + validated w/ HippoUnit (Tomko et al '21)
|
313. |
Reflected SDE Hodgkin-Huxley Model (Dangerfield et al. 2012)
|
314. |
Regulation of motoneuron excitability by KCNQ/Kv7 modulators (Lombardo & Harrington 2016)
|
315. |
Rejuvenation model of dopamine neuron (Chan et al. 2007)
|
316. |
Relative spike time coding and STDP-based orientation selectivity in V1 (Masquelier 2012)
|
317. |
Respiratory pacemaker neurons (Butera et al 1999)
|
318. |
Resurgent Na+ current offers noise modulation in bursting neurons (Venugopal et al 2019)
|
319. |
Resurgent sodium transient current in zebra finch RA (Zemel et al accepted)
|
320. |
Rhesus Monkey Layer 3 Pyramidal Neurons: Young vs aged PFC (Coskren et al. 2015)
|
321. |
Robust modulation of integrate-and-fire models (Van Pottelbergh et al 2018)
|
322. |
Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017)
|
323. |
Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005)
|
324. |
Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005) (XPP)
|
325. |
Roles of I(A) and morphology in AP prop. in CA1 pyramidal cell dendrites (Acker and White 2007)
|
326. |
Salamander retinal ganglian cells: morphology influences firing (Sheasby, Fohlmeister 1999)
|
327. |
SCN1A gain-of-function in early infantile encephalopathy (Berecki et al 2019)
|
328. |
Selective control of cortical axonal spikes by a slowly inactivating K+ current (Shu et al. 2007)
|
329. |
Serotonergic modulation of Aplysia sensory neurons (Baxter et al 1999)
|
330. |
Shaping of action potentials by different types of BK channels (Jaffe et al., 2011)
|
331. |
Sharpness of spike initiation in neurons explained by compartmentalization (Brette 2013)
|
332. |
Simple and accurate Diffusion Approximation algor. for stochastic ion channels (Orio & Soudry 2012)
|
333. |
Simulated light response in rod photoreceptors (Liu and Kourennyi 2004)
|
334. |
Simulating ion channel noise in an auditory brainstem neuron model (Schmerl & McDonnell 2013)
|
335. |
Simulation studies on mechanisms of levetiracetam-mediated inhibition of IK(DR) (Huang et al. 2009)
|
336. |
Simulation study of Andersen-Tawil syndrome (Sung et al 2006)
|
337. |
Simulations of motor unit discharge patterns (Powers et al. 2011)
|
338. |
Single cell model with variable ion concentrations and Na+/K+ ATPase (Krishnan et al. 2015)
|
339. |
Single-cell comprehensive biophysical model of SN pars compacta (Muddapu & Chakravarthy 2021)
|
340. |
Site of impulse initiation in a neuron (Moore et al 1983)
|
341. |
Sodium channel mutations causing generalized epilepsy with febrile seizures + (Barela et al. 2006)
|
342. |
Sodium currents activate without a delay (Baranauskas and Martina 2006)
|
343. |
Sound-evoked activity in peripheral axons of type I spiral ganglion neurons (Budak et al. 2021)
|
344. |
Spatial constrains of GABAergic rheobase shift (Lombardi et al., accepted)
|
345. |
Spectral method and high-order finite differences for nonlinear cable (Omurtag and Lytton 2010)
|
346. |
Spike Initiation in Neocortical Pyramidal Neurons (Mainen et al 1995)
|
347. |
Spike propagation and bouton activation in terminal arborizations (Luscher, Shiner 1990)
|
348. |
Spike propagation in dendrites with stochastic ion channels (Diba et al. 2006)
|
349. |
Spike repolarization in axon collaterals (Foust et al. 2011)
|
350. |
Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008)
|
351. |
Spike trains in Hodgkin–Huxley model and ISIs of acupuncture manipulations (Wang et al. 2008)
|
352. |
Spike-timing dependent inhibitory plasticity for gating bAPs (Wilmes et al 2017)
|
353. |
Spikelet generation and AP initiation in a L5 neocortical pyr neuron (Michalikova et al. 2017) Fig 1
|
354. |
Spikelet generation and AP initiation in a simplified pyr neuron (Michalikova et al. 2017) Fig 3
|
355. |
Spiking GridPlaceMap model (Pilly & Grossberg, PLoS One, 2013)
|
356. |
Spinal Motor Neuron (Dodge, Cooley 1973)
|
357. |
Spinal Motor Neuron (McIntyre et al 2002)
|
358. |
Spine fusion and branching affects synaptic response (Rusakov et al 1996, 1997)
|
359. |
Spontaneous firing caused by stochastic channel gating (Chow, White 1996)
|
360. |
Squid axon (Hodgkin, Huxley 1952) (LabAXON)
|
361. |
Squid axon (Hodgkin, Huxley 1952) (NEURON)
|
362. |
Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other)
|
363. |
Squid axon (Hodgkin, Huxley 1952) (SNNAP)
|
364. |
Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language)
|
365. |
Squid axon: Bifurcation analysis of mode-locking (Lee & Kim 2006) (Gangal & Dar 2014)
|
366. |
State and location dependence of action potential metabolic cost (Hallermann et al., 2012)
|
367. |
STDP depends on dendritic synapse location (Letzkus et al. 2006)
|
368. |
Stimulated and physiologically induced APs: frequency and fiber diameter (Sadashivaiah et al 2018)
|
369. |
Stochastic 3D model of neonatal rat spinal motoneuron (Ostroumov 2007)
|
370. |
Stochastic calcium mechanisms cause dendritic calcium spike variability (Anwar et al. 2013)
|
371. |
Stochastic ion channels and neuronal morphology (Cannon et al. 2010)
|
372. |
Stochastic layer V pyramidal neuron: interpulse interval coding and noise (Singh & Levy 2017)
|
373. |
Stochastic versions of the Hodgkin-Huxley equations (Goldwyn, Shea-Brown 2011)
|
374. |
Stochastic versions of the Hodgkin-Huxley equations (Goldwyn, Shea-Brown 2011) (pylab)
|
375. |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
|
376. |
Striatal Output Neuron (Mahon, Deniau, Charpier, Delord 2000)
|
377. |
Submyelin Potassium accumulation in Subthalamic neuron (STN) axons (Bellinger et al. 2008)
|
378. |
Subthreshold inact. of K channels modulates APs in bitufted interneurons (Korngreen et al 2005)
|
379. |
Superior paraolivary nucleus neuron (Kopp-Scheinpflug et al. 2011)
|
380. |
Sympathetic Preganglionic Neurone (Briant et al. 2014)
|
381. |
Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
|
382. |
Synaptic integration in a model of granule cells (Gabbiani et al 1994)
|
383. |
Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)
|
384. |
Synergistic inhibitory action of oxcarbazepine on INa and IK (Huang et al. 2008)
|
385. |
Temperature sensitive axon models (DeMaegd & Stein 2020)
|
386. |
Temperature-Sensitive conduction at axon branch points (Westerfield et al 1978)
|
387. |
Thalamic network model of deep brain stimulation in essential tremor (Birdno et al. 2012)
|
388. |
Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005)
|
389. |
Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996)
|
390. |
Thalamocortical control of propofol phase-amplitude coupling (Soplata et al 2017)
|
391. |
The APP in C-terminal domain alters CA1 neuron firing (Pousinha et al 2019)
|
392. |
The basis of sharp spike onset in standard biophysical models (Telenczuk et al 2017)
|
393. |
The cannula artifact (Chandler & Hodgkin 1965)
|
394. |
The electrodiffusive neuron-extracellular-glia (edNEG) model (Sætra et al. 2021)
|
395. |
The electrodiffusive Pinsky-Rinzel (edPR) model (Sætra et al., 2020)
|
396. |
The role of ATP-sensitive potassium channels in a hippocampal neuron (Huang et al. 2007)
|
397. |
The role of glutamate in neuronal ion homeostasis: spreading depolarization (Hubel et al 2017)
|
398. |
The subcellular distribution of T-type Ca2+ channels in LGN interneurons (Allken et al. 2014)
|
399. |
The ventricular AP and effects of the isoproterenol-induced cardiac hypertrophy (Sengul et al 2020)
|
400. |
Theoretical principles of DBS induced synaptic suppression (Farokhniaee & McIntyre 2019)
|
401. |
Theory of sequence memory in neocortex (Hawkins & Ahmad 2016)
|
402. |
Tight junction model of CNS myelinated axons (Devaux and Gow 2008)
|
403. |
Tonic activation of extrasynaptic NMDA-R promotes bistability (Gall & Dupont 2020)
|
404. |
Tonic neuron in spinal lamina I: prolongation of subthreshold depol. (Prescott and De Koninck 2005)
|
405. |
Touch Sensory Cells (T Cells) of the Leech (Cataldo et al. 2004) (Scuri et al. 2007)
|
406. |
Understanding odor information segregation in the olfactory bulb by MC/TCs (Polese et al. 2014)
|
407. |
Using Strahler's analysis to reduce realistic models (Marasco et al, 2013)
|
408. |
Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++)
|
409. |
Ventricular cell model (Luo Rudy dynamic model) (Luo Rudy 1994) used in (Wang et al 2006) (XPP)
|
410. |
Voltage- and Branch-specific Climbing Fiber Responses in Purkinje Cells (Zang et al 2018)
|
411. |
Vomeronasal sensory neuron (Shimazaki et al 2006)
|
412. |
VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
|
413. |
Xenopus Myelinated Neuron (Frankenhaeuser, Huxley 1964)
|
414. |
Zonisamide-induced inhibition of the firing of APs in hippocampal neurons (Huang et al. 2007)
|