Models that contain the Model Concept : Intrinsic plasticity

(Neuronal or synaptic activity, especially the reception of neuromodulators can change properties, such as activation, inactivation curves, time constants, and conductances/conductance densities of intrinsic voltage-gated currents. See <a href=""></a>)
Re-display model names without descriptions
    Models   Description
1.  A simplified cerebellar Purkinje neuron (the PPR model) (Brown et al. 2011)
These models were implemented in NEURON by Sherry-Ann Brown in the laboratory of Leslie M. Loew. The files reproduce Figures 2c-f from Brown et al, 2011 "Virtual NEURON: a Strategy For Merged Biochemical and Electrophysiological Modeling".
2.  CA1 pyramidal neuron: rebound spiking (Ascoli et al.2010)
The model demonstrates that CA1 pyramidal neurons support rebound spikes mediated by hyperpolarization-activated inward current (Ih), and normally masked by A-type potassium channels (KA). Partial KA reduction confined to one or few branches of the apical tuft may be sufficient to elicit a local spike following a train of synaptic inhibition. These data suggest that the plastic regulation of KA can provide a dynamic switch to unmask post-inhibitory spiking in CA1 pyramidal neurons, further increasing the signal processing power of the CA1 synaptic microcircuitry.
3.  Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
This is the GENESIS 2.3 implementation of a multi-compartmental deep cerebellar nucleus (DCN) neuron model with a full dendritic morphology and appropriate active conductances. We generated a good match of our simulations with DCN current clamp data we recorded in acute slices, including the heterogeneity in the rebound responses. We then examined how inhibitory and excitatory synaptic input interacted with these intrinsic conductances to control DCN firing. We found that the output spiking of the model reflected the ongoing balance of excitatory and inhibitory input rates and that changing the level of inhibition performed an additive operation. Rebound firing following strong Purkinje cell input bursts was also possible, but only if the chloride reversal potential was more negative than -70 mV to allow de-inactivation of rebound currents. Fast rebound bursts due to T-type calcium current and slow rebounds due to persistent sodium current could be differentially regulated by synaptic input, and the pattern of these rebounds was further influenced by HCN current. Our findings suggest that active properties of DCN neurons could play a crucial role for signal processing in the cerebellum.
4.  Dentate gyrus network model pattern separation and granule cell scaling in epilepsy (Yim et al 2015)
The dentate gyrus (DG) is thought to enable efficient hippocampal memory acquisition via pattern separation. With patterns defined as spatiotemporally distributed action potential sequences, the principal DG output neurons (granule cells, GCs), presumably sparsen and separate similar input patterns from the perforant path (PP). In electrophysiological experiments, we have demonstrated that during temporal lobe epilepsy (TLE), GCs downscale their excitability by transcriptional upregulation of ‘leak’ channels. Here we studied whether this cell type-specific intrinsic plasticity is in a position to homeostatically adjust DG network function. We modified an established conductance-based computer model of the DG network such that it realizes a spatiotemporal pattern separation task, and quantified its performance with and without the experimentally constrained leaky GC phenotype. ...
5.  Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)
"A stylized, symmetric, compartmental model of a dopamine neuron in vivo shows how rate and pattern can be modulated either concurrently or differentially. If two or more parameters in the model are varied concurrently, the baseline firing rate and the extent of bursting become decorrelated, which provides an explanation for the lack of a tight correlation in vivo and is consistent with some independence of the mechanisms that generate baseline firing rates versus bursting. ..." See paper for more and details.
6.  Diffusive homeostasis in a spiking network model (Sweeney et al. 2015)
In this paper we propose a new mechanism, diffusive homeostasis, in which neural excitability is modulated by nitric oxide, a gas which can flow freely across cell membranes. Our model simulates the activity-dependent synthesis and diffusion of nitric oxide in a recurrent network model of integrate-and-fire neurons. The concentration of nitric oxide is then used as homeostatic readout which modulates the firing threshold of each neuron.
7.  KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
The output of the cerebellum to the motor axis of the central nervous system is orchestrated mainly by synaptic inputs and intrinsic pacemaker activity of deep cerebellar nuclear (DCN) projection neurons. Herein, we demonstrate that the soma of these cells is enriched with KV1 channels produced by mandatory multi-merization of KV1.1, 1.2 alpha andKV beta2 subunits. Being constitutively active, the K+ current (IKV1) mediated by these channels stabilizes the rate and regulates the temporal precision of self-sustained firing of these neurons. ... Through the use of multi-compartmental modelling and ... the physiological significance of the described functions for processing and communication of information from the lateral DCN to thalamic relay nuclei is established.
8.  L5 pyr. cell spiking control by oscillatory inhibition in distal apical dendrites (Li et al 2013)
This model examined how distal oscillatory inhibition influences the firing of a biophysically-detailed layer 5 pyramidal neuron model.
9.  Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014)
"We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function). We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. ... "
10.  Motoneuron model of self-sustained firing after spinal cord injury (Kurian et al. 2011)
" ... During the acute-stage of spinal cord injury (SCI), the endogenous ability to generate plateaus is lost; however, during the chronic-stage of SCI, plateau potentials reappear with prolonged self-sustained firing that has been implicated in the development of spasticity. In this work, we extend previous modeling studies to systematically investigate the mechanisms underlying the generation of plateau potentials in motoneurons, including the influences of specific ionic currents, the morphological characteristics of the soma and dendrite, and the interactions between persistent inward currents and synaptic input. ..."
11.  Multicompartmental cerebellar granule cell model (Diwakar et al. 2009)
A detailed multicompartmental model was used to study neuronal electroresponsiveness of cerebellar granule cells in rats. Here we show that, in cerebellar granule cells, Na+ channels are enriched in the axon, especially in the hillock, but almost absent from soma and dendrites. Numerical simulations indicated that granule cells have a compact electrotonic structure allowing EPSPs to diffuse with little attenuation from dendrites to axon. The spike arose almost simultaneously along the whole axonal ascending branch and invaded the hillock, whose activation promoted spike back-propagation with marginal delay (<200 micros) and attenuation (<20 mV) into the somato-dendritic compartment. For details check the cited article.
12.  Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)
Model files for the entry "Olfactory Computations in Mitral-Granule Cell Circuits" of the Springer Encyclopedia of Computational Neuroscience by Michele Migliore and Tom Mctavish. The simulations illustrate two typical Mitral-Granule cell circuits in the olfactory bulb of vertebrates: distance-independent lateral inhibition and gating effects.
13.  Ribbon Synapse (Sikora et al 2005)
A model of the ribbon synapse was developed to replicate both pre- and postsynaptic functions of this glutamatergic juncture. The presynaptic portion of the model is rich in anatomical and physiological detail and includes multiple release sites for each ribbon based on anatomical studies of presynaptic terminals, presynaptic voltage at the terminal, the activation of voltage-gated calcium channels and a calcium-dependent release mechanism whose rate varies as a function of the calcium concentration that is monitored at two different sites which control both an ultrafast, docked pool of vesicles and a release ready pool of tethered vesicles. See paper for more and details.
14.  Spiny neuron model with dopamine-induced bistability (Gruber et al 2003)
These files implement a model of dopaminergic modulation of voltage-gated currents (called kir2 and caL in the original paper). See spinycell.html for details of usage and implementation. For questions about this implementation, contact Ted Carnevale (

Re-display model names without descriptions