Models that contain the Cell : Cardiac atrial cell

Re-display model names without descriptions
    Models   Description
1.  Biophysically detailed model of the mouse sino-atrial node cell (Kharche et al. 2011)
This model is developed to study the role of various electrophysiological mechanisms in generating cardiac pacemaking action potentials (APs).The model incorporates membrane ionic currents and intracellular mechanisms contributing to spontaneous mouse SAN APs. The model was validated by testing the functional roles of individual membrane currents in one and multiple parameter analyses.The roles of intracellular Ca2+-handling mechanisms on cardiac pacemaking were also investigated in the model.
2.  Cardiac action potentials and pacemaker activity of sinoatrial node (DiFrancesco & Noble 1985)
"Equations have been developed to describe cardiac action potentials and pacemaker activity. The model takes account of extensive developments in experimental work ..."
3.  Cardiac Atrial Cell (Courtemanche et al 1998)
Marc Courtemanche, Rafael J. Ramirez, and Stanley Nattel. Ionic mechanisms underlying human atrial action potential properties insights from a mathematical model Am J Physiol Heart Circ Physiol 1998 275: H301-H321. The implementation of this model in NEURON was contributed by Ingemar Jacobson.
4.  Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)
Python and MATLAB scripts for studying the dual effects of SCZ-related genes on layer 5 pyramidal cell firing and sinoatrial node cell pacemaking properties. The study is based on two L5PC models (Hay et al. 2011, Almog & Korngreen 2014) and SANC models (Kharche et al. 2011, Severi et al. 2012).
5.  Voltage and light-sensitive Channelrhodopsin-2 model (ChR2) (Williams et al. 2013)
" ... Focusing on one of the most widely used ChR2 mutants (H134R) with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1) accurate inward rectification in the current-voltage response across irradiances; 2) empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation); and 3) accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10) were derived and model kinetics was adjusted to physiological temperatures. ... "

Re-display model names without descriptions