Models that contain the Implementer : Blackwell, Avrama [avrama at]

Re-display model names without descriptions
    Models   Description
1.  CA1 pyramidal cell receptor dependent cAMP dynamics (Chay et al. 2016)
We use a combination of live cell imaging and stochastic modeling of signaling pathways to investigate how noradrenergic receptor stimulation interacts with calcium to control cAMP, required for synaptic plasticity and memory in the hippocampus. Our simulation results explain the mechanism whereby prior noradrenergic receptor stimulation does not enhance the subsequent NMDA stimulated cAMP elevation. Specifically, our results demonstrate the the negative feedback loop from cAMP, through PKA, to PDE4 cannot explain the results, and that switching of the noradrenergic receptor from Gs to Gi is required.
2.  Compartmental differences in cAMP signaling pathways in hippocam. CA1 pyr. cells (Luczak et al 2017)
Model of cAMP signaling pathways in hippocampal CA1 pyramidal neurons investigate mechanisms underlying the experimentally observed difference in cAMP and PKA FRET between proximal and distal dendrites. Simulations show that compartmental difference in PKA activity required enrichment of protein phosphatase in small compartments; neither reduced PKA subunits nor increased PKA substrates were sufficient.
3.  Differences between type A and B photoreceptors (Blackwell 2006)
In Hermissenda crassicornis, the memory of light associated with turbulence is stored as changes in intrinsic and synaptic currents in both type A and type B photoreceptors. These photoreceptor types exhibit qualitatively different responses to light and current injection, and these differences shape the spatiotemporal firing patterns that control behavior. Thus the objective of the study was to identify the mechanisms underlying these differences. The approach was to develop a type B model that reproduced characteristics of type B photoreceptors recorded in vitro, and then to create a type A model by modifying a select number of ionic currents. Comparison of type A models with characteristics of type A photoreceptors recorded in vitro revealed that type A and type B photoreceptors have five main differences, three that have been characterized experimentally and two that constitute hypotheses to be tested with experiments in the future. See paper for more and details.
4.  Dopamine activation of signaling pathways in a medium spiny projection neuron (Oliveira et al. 2012)
Large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines to investigate whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. Simulations, implemented in NeuroRD, show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase.
5.  FS Striatal interneuron: K currents solve signal-to-noise problems (Kotaleski et al 2006)
... We show that a transient potassium (KA) current allows the Fast Spiking (FS) interneuron to strike a balance between sensitivity to correlated input and robustness to noise, thereby increasing its signal-to-noise ratio (SNR). First, a compartmental FS neuron model was created to match experimental data from striatal FS interneurons in cortex–striatum–substantia nigra organotypic cultures. Densities of sodium, delayed rectifier, and KA channels were optimized to replicate responses to somatic current injection. Spontaneous AMPA and GABA synaptic currents were adjusted to the experimentally measured amplitude, rise time, and interevent interval histograms. Second, two additional adjustments were required to emulate the remaining experimental observations. GABA channels were localized closer to the soma than AMPA channels to match the synaptic population reversal potential. Correlation among inputs was required to produce the observed firing rate during up-states. In this final model, KA channels were essential for suppressing down-state spikes while allowing reliable spike generation during up-states. ... Our results suggest that KA channels allow FS interneurons to operate without a decrease in SNR during conditions of increased dopamine, as occurs in response to reward or anticipated reward. See paper for more and details.
6.  Gq coupled signaling pathways involved in striatal synaptic plasticity (Kim et al. 2013)
Model of Gq coupled signaling pathways underlying synaptic plasticity in striatal medium spiny projection neurons. Reactions and diffusion are implemented stochastically in a dendrite with one or more diffusionally coupled spines. Simulations demonstrate that theta burst stimulation, which produces LTP, increases the ratio of PKC:2AG as compared to 20 Hz stimulation, which produces LTD.
7.  Hippocampus CA1: Simulations of LTP signaling pathways (Kim M et al. 2011)
This is a multi-compartmental, stochastic version of the Kim et al. 2010 paper. There are a few additional reactions, and some of the rate constants have been updated. It addresses the role of molecule anchoring in PKA dependent hippocampal LTP.
8.  Hippocampus CA1: Temporal sensitivity of signaling pathways underlying LTP (Kim et al. 2010)
Temporal sensitivity of signaling pathways underlying L-LTP. Single compartment, deterministic model of calcium and dopamine activated pathways, leading to CaMKII and PKA activation. Experimental verification of model prediction.
9.  NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
Effect of NMDA subunit on spike timing dependent plasticity.
10.  Paired turbulence and light effect on calcium increase in Hermissenda (Blackwell 2004)
The sea slug Hermissenda learns to associate light and hair cell stimulation, but not when the stimuli are temporally uncorrelated...These issues were addressed using a multi-compartmental computer model of phototransduction, calcium dynamics, and ionic currents of the Hermissenda photoreceptor...simulations show that a potassium leak channel, which closes with an increase in calcium, is required to produce both the untrained LLD and the enhanced LLD due to the decrease in voltage dependent potassium currents.
11.  Parameter optimization using CMA-ES (Jedrzejewski-Szmek et al 2018)
"Computational models in neuroscience can be used to predict causal relationships between biological mechanisms in neurons and networks, such as the effect of blocking an ion channel or synaptic connection on neuron activity. Since developing a biophysically realistic, single neuron model is exceedingly difficult, software has been developed for automatically adjusting parameters of computational neuronal models. The ideal optimization software should work with commonly used neural simulation software; thus, we present software which works with models specified in declarative format for the MOOSE simulator. Experimental data can be specified using one of two different file formats. The fitness function is customizable as a weighted combination of feature differences. The optimization itself uses the covariance matrix adaptation-evolutionary strategy, because it is robust in the face of local fluctuations of the fitness function, and deals well with a high-dimensional and discontinuous fitness landscape. We demonstrate the versatility of the software by creating several model examples of each of four types of neurons (two subtypes of spiny projection neurons and two subtypes of globus pallidus neurons) by tuning to current clamp data. ..."
12.  Signaling pathways In D1R containing striatal spiny projection neurons (Blackwell et al 2018)
We implemented a mechanistic model of signaling pathways activated by dopamine D1 receptors, acetylcholine receptors, and glutamate. We use our novel, computationally efficient simulator, NeuroRD, to simulate stochastic interactions both within and between dendritic spines. Results show that the combined activity of several key plasticity molecules correctly predicts the occurrence of either LTP, LTD or no plasticity for numerous experimental protocols.
13.  Signaling pathways underlying LTP in hippocampal CA1 pyramidal cells (Jedrzejewska-Szmek et al 2017)
" ...We investigated whether the diverse experimental evidence can be unified by creating a spatial, mechanistic model of multiple signaling pathways in hippocampal CA1 neurons. Our results show that the combination of activity of several key kinases can predict the occurrence of long-lasting forms of LTP for multiple experimental protocols. ..."
14.  Striatal Spiny Projection Neuron (SPN) plasticity rule (Jedrzejewska-Szmek et al 2016)
15.  Synchronicity of fast-spiking interneurons balances medium-spiny neurons (Damodaran et al. 2014)
This study investigates the role of feedforward and feedback inhibition in maintaining the balance between D1 and D2 MSNs of the striatum. The synchronized firing of FSIs are found to be critical in this mechanism and specifically the gap junction connections between FSIs.

Re-display model names without descriptions