Models that contain the Cell : Aplysia feeding CPG neurons

Re-display model names without descriptions
    Models   Description
1.  Computational Model of a Central Pattern Generator (Cataldo et al 2006)
The buccal ganglia of Aplysia contain a central pattern generator (CPG) that mediates rhythmic movements of the foregut during feeding. This CPG is a multifunctional circuit and generates at least two types of buccal motor patterns (BMPs), one that mediates ingestion (iBMP) and another that mediates rejection (rBMP). The present study used a computational approach to examine the ways in which an ensemble of identified cells and synaptic connections function as a CPG. Hodgkin-Huxley-type models were developed that mimicked the biophysical properties of these cells and synaptic connections. The results suggest that the currently identified ensemble of cells is inadequate to produce rhythmic neural activity and that several key elements of the CPG remain to be identified.
2.  Computational model of the distributed representation of operant reward memory (Costa et al. 2020)
Operant reward learning of feeding behavior in Aplysia increases the frequency and regularity of biting, as well as biases buccal motor patterns (BMPs) toward ingestion-like BMPs (iBMPs). The engram underlying this memory comprises cells that are part of a central pattern generating (CPG) circuit and includes increases in the intrinsic excitability of identified cells B30, B51, B63, and B65, and increases in B63–B30 and B63–B65 electrical synaptic coupling. To examine the ways in which sites of plasticity (individually and in combination) contribute to memory expression, a model of the CPG was developed. The model included conductance-based descriptions of cells CBI-2, B4, B8, B20, B30, B31, B34, B40, B51, B52, B63, B64, and B65, and their synaptic connections. The model generated patterned activity that resembled physiological BMPs, and implementation of the engram reproduced increases in frequency, regularity, and bias. Combined enhancement of B30, B63, and B65 excitabilities increased BMP frequency and regularity, but not bias toward iBMPs. Individually, B30 increased regularity and bias, B51 increased bias, B63 increased frequency, and B65 decreased all three BMP features. Combined synaptic plasticity contributed primarily to regularity, but also to frequency and bias. B63–B30 coupling contributed to regularity and bias, and B63–B65 coupling contributed to all BMP features. Each site of plasticity altered multiple BMP features simultaneously. Moreover, plasticity loci exhibited mutual dependence and synergism. These results indicate that the memory for operant reward learning emerged from the combinatoric engagement of multiple sites of plasticity.

Re-display model names without descriptions