Models that contain the Neuron : Neostriatum interneuron ACh cell

Re-display model names without descriptions
    Models   Description
1.  D2 dopamine receptor modulation of interneuronal activity (Maurice et al. 2004)
"... Using a combination of electrophysiological, molecular, and computational approaches, the studies reported here show that D2 dopamine receptor modulation of Na+ currents underlying autonomous spiking contributes to a slowing of discharge rate, such as that seen in vivo. Four lines of evidence support this conclusion. ... Fourth, simulation of cholinergic interneuron pacemaking revealed that a modest increase in the entry of Na+ channels into the slow-inactivated state was sufficient to account for the slowing of pacemaker discharge. These studies establish a cellular mechanism linking dopamine and the reduction in striatal cholinergic interneuron activity seen in the initial stages of associative learning." See paper for more and details.
2.  The microcircuits of striatum in silico (Hjorth et al 2020)
"Our aim is to reconstruct a full-scale mouse striatal cellular level model to provide a framework to integrate and interpret striatal data. We represent the main striatal neuronal subtypes, the two types of projection neurons (dSPNs and iSPNs) giving rise to the direct and indirect pathways, the fast-spiking interneurons, the low threshold spiking interneurons, and the cholinergic interneurons as detailed compartmental models, with properties close to their biological counterparts. Both intrastriatal and afferent synaptic inputs (cortex, thalamus, dopamine system) are optimized against existing data, including short-term plasticity. This model platform will be used to generate new hypotheses on striatal function or network dynamic phenomena."

Re-display model names without descriptions