Models that contain the Implementer : Calin-Jageman, Robert [rcalinjageman at gsu dot edu]

Re-display model names without descriptions
    Models   Description
1.  Classic model of the Tritonia Swim CPG (Getting, 1989)
Classic model developed by Petter Getting of the 3-cell core CPG (DSI, C2, and VSI-B) mediating escape swimming in Tritonia diomedea. Cells use a hybrid integrate-and-fire scheme pioneered by Peter Getting. Each model cell is reconstructed from extensive physiological measurements to precisely mimic I-F curves, synaptic waveforms, and functional connectivity. **However, continued physiological measurements show that Getting may have inadvertently incorporated modulatory and or polysynaptic effects -- the properties of this model do *not* match physiological measurements in rested preparations.** This simulation reconstructs the Getting model as reported in: Getting (1989) 'Reconstruction of small neural networks' In Methods in Neural Modeling, 1st ed, p. 171-196. See also, an earlier version of this model reported in Getting (1983). Every attempt has been made to replicate the 1989 model as precisely as possible.
2.  Distributed computing tool for NEURON, NEURONPM (screensaver) (Calin-Jageman and Katz 2006)
"... To lower the barrier for large-scale model analysis, we have developedNeuronPM, a client/server application that creates a “screen-saver” cluster for running simulations in NEURON (Hines & Carnevale, 1997). ... The NeuronPM client is a Windows-based screen saver, and the NeuronPM server can be hosted on any Apache/PHP/MySQL server. ... Administrative panels make it simple to upload model files, define the parameters and conditions to vary, and then monitor client status and work progress. NeuronPM is open-source freeware and is available for download at http://neuronpm.homeip.net. ..."
3.  Updated Tritonia Swim CPG (Calin-Jagemann et al. 2007)
Model of the 3-cell core CPG (DSI, C2, and VSI-B) mediating escape swimming in Tritonia diomedea. Cells use a hybrid integrate-and-fire scheme pioneered by Peter Getting. Each model cell is reconstructed from extensive physiological measurements to precisely mimic I-F curves, synaptic waveforms, and functional connectivity.

Re-display model names without descriptions