| Models |
1. |
A Computational Model of Bidirectional Plasticity Regulation by betaCaMKII (Pinto et al. 2019)
|
2. |
A dual-Ca2+-sensor model for neurotransmitter release in a central synapse (Sun et al. 2007)
|
3. |
A kinetic model unifying presynaptic short-term facilitation and depression (Lee et al. 2009)
|
4. |
A mathematical model of a neurovascular unit (Dormanns et al 2015, 2016) (Farrs & David 2011)
|
5. |
A mathematical model of evoked calcium dynamics in astrocytes (Handy et al 2017)
|
6. |
A model of neurovascular coupling and the BOLD response (Mathias et al 2017, Kenny et al 2018)
|
7. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (CellML)
|
8. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (SBML)
|
9. |
A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012)
|
10. |
A simple integrative electrophysiological model of bursting GnRH neurons (Csercsik et al. 2011)
|
11. |
A synapse model for developing somatosensory cortex (Manninen et al 2020)
|
12. |
Action potential of mouse urinary bladder smooth muscle (Mahapatra et al 2018)
|
13. |
Active dendrites shape signaling microdomains in hippocampal neurons (Basak & Narayanan 2018)
|
14. |
Activity dependent changes in dendritic spine density and spine structure (Crook et al. 2007)
|
15. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
|
16. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
|
17. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
|
18. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
|
19. |
Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
|
20. |
Allen Institute: Nr5a1-Cre VISp layer 4 329322394
|
21. |
Allen Institute: Nr5a1-Cre VISp layer 4 472306544
|
22. |
Allen Institute: Nr5a1-Cre VISp layer 4 472442377
|
23. |
Allen Institute: Nr5a1-Cre VISp layer 4 472451419
|
24. |
Allen Institute: Nr5a1-Cre VISp layer 4 472915634
|
25. |
Allen Institute: Nr5a1-Cre VISp layer 4 473834758
|
26. |
Allen Institute: Nr5a1-Cre VISp layer 4 473863035
|
27. |
Allen Institute: Nr5a1-Cre VISp layer 4 473871429
|
28. |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904
|
29. |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
|
30. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
|
31. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
|
32. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
|
33. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
|
34. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
|
35. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
|
36. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
|
37. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
|
38. |
Allen Institute: Rbp4-Cre VISp layer 5 472424854
|
39. |
Allen Institute: Rbp4-Cre VISp layer 6a 473871592
|
40. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
|
41. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
|
42. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
|
43. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
|
44. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
|
45. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
|
46. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
|
47. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
|
48. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
|
49. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
|
50. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
|
51. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
|
52. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
|
53. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
|
54. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
|
55. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
|
56. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
|
57. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
|
58. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
|
59. |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
|
60. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
|
61. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
|
62. |
Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
|
63. |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
|
64. |
Astrocyte and Blood Vessel Calcium Imaging Tracking code (Haidey et al 2021)
|
65. |
Ave. neuron model for slow-wave sleep in cortex Tatsuki 2016 Yoshida 2018 Rasmussen 2017 (all et al)
|
66. |
BCM-like synaptic plasticity with conductance-based models (Narayanan Johnston, 2010)
|
67. |
Behavioral time scale synaptic plasticity underlies CA1 place fields (Bittner et al. 2017)
|
68. |
Biophysically detailed model of somatosensory thalamocortical circuit (Borges et al accepted)
|
69. |
Biophysically detailed model of the mouse sino-atrial node cell (Kharche et al. 2011)
|
70. |
BK - CaV coupling (Montefusco et al. 2017)
|
71. |
Ca(2+) oscillations based on Ca-induced Ca-release (Dupont et al 1991)
|
72. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
73. |
CA1 pyramidal neuron dendritic spine with plasticity (O`Donnell et al. 2011)
|
74. |
CA1 pyramidal neuron: dendritic Ca2+ inhibition (Muellner et al. 2015)
|
75. |
CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)
|
76. |
CA1 pyramidal: Stochastic amplification of KCa in Ca2+ microdomains (Stanley et al. 2011)
|
77. |
Ca2+ current versus Ca2+ channel cooperativity of exocytosis (Matveev et al. 2009)
|
78. |
Ca2+ oscillations in single astrocytes (Lavrentovich and Hemkin 2008) (python) (Manninen et al 2017)
|
79. |
Ca2+ Oscillations in Sympathetic neurons (Friel 1995)
|
80. |
Calcium dynamics depend on dendritic diameters (Anwar et al. 2014)
|
81. |
Calcium influx during striatal upstates (Evans et al. 2013)
|
82. |
Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
|
83. |
Calcium spikes in basal dendrites (Kampa and Stuart 2006)
|
84. |
Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
|
85. |
Calcium waves in neuroblastoma cells (Fink et al. 2000)
|
86. |
Cardiac Atrial Cell (Courtemanche et al 1998)
|
87. |
Cardiac sarcomere dynamics (Negroni and Lascano 1996)
|
88. |
Cerebellar Golgi cells, dendritic processing, and synaptic plasticity (Masoli et al 2020)
|
89. |
Cerebellar granule cell (Masoli et al 2020)
|
90. |
Cerebellar purkinje cell: interacting Kv3 and Na currents influence firing (Akemann, Knopfel 2006)
|
91. |
Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001)
|
92. |
Cerebellum Purkinje cell: dendritic ion channels activated by climbing fibre (Ait Ouares et al 2019)
|
93. |
Coincident signals in Olfactory Bulb Granule Cell spines (Aghvami et al 2019)
|
94. |
Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018)
|
95. |
Computer model of clonazepam's effect in thalamic slice (Lytton 1997)
|
96. |
Computer simulations of neuron-glia interactions mediated by ion flux (Somjen et al. 2008)
|
97. |
Conductance based model for short term plasticity at CA3-CA1 synapses (Mukunda & Narayanan 2017)
|
98. |
Controlling KCa channels with different Ca2+ buffering models in Purkinje cell (Anwar et al. 2012)
|
99. |
Dendritic signals command firing dynamics in a Cerebellar Purkinje Cell model (Genet et al. 2010)
|
100. |
Dendritic spine geometry, spine apparatus organization: spatiotemporal Ca dynamics (Bell et al 2019)
|
101. |
Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
|
102. |
Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999)
|
103. |
Depolarization Enhacement of Dendritic Spike Propagation (Bock et al 2022)
|
104. |
Determinants of fast calcium dynamics in dendritic spines and dendrites (Cornelisse et al. 2007)
|
105. |
Deterministic chaos in a mathematical model of a snail neuron (Komendantov and Kononenko 1996)
|
106. |
Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)
|
107. |
Discrimination on behavioral time-scales mediated by reaction-diffusion in dendrites (Bhalla 2017)
|
108. |
Disentangling astroglial physiology with a realistic cell model in silico (Savtchenko et al 2018)
|
109. |
Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016)
|
110. |
ERG current in repolarizing plateau potentials in dopamine neurons (Canavier et al 2007)
|
111. |
Excitability of PFC Basal Dendrites (Acker and Antic 2009)
|
112. |
Excitation-contraction coupling/mitochondrial energetics (ECME) model (Cortassa et al. 2006)
|
113. |
Facilitation model based on bound Ca2+ (Matveev et al. 2006)
|
114. |
Facilitation through buffer saturation (Matveev et al. 2004)
|
115. |
Glutamate mediated dendritic and somatic plateau potentials in cortical L5 pyr cells (Gao et al '20)
|
116. |
Glutamate-evoked Ca2+ oscillations in single astrocytes (De Pitta et al. 2009) (Manninen et al 2017)
|
117. |
Glutamate-evoked Ca2+ oscillations in single astrocytes (Modified from Dupont et al. 2011)
|
118. |
Intrinsic sensory neurons of the gut (Chambers et al. 2014)
|
119. |
Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005)
|
120. |
Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
|
121. |
Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
|
122. |
Locus Coeruleus blocking model (Chowdhury et al. accepted)
|
123. |
Low Threshold Calcium Currents in TC cells (Destexhe et al 1998)
|
124. |
Low Threshold Calcium Currents in TC cells (Destexhe et al 1998) (Brian)
|
125. |
Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)
|
126. |
Medial vestibular neuron models (Quadroni and Knopfel 1994)
|
127. |
Model for K-ATP mediated bursting in mSNc DA neurons (Knowlton et al 2018)
|
128. |
Model for pancreatic beta-cells (Law et al. 2020)
|
129. |
Model of AngII signaling and membrane electrophysiology (Makadia, Anderson, Fey et al., 2015)
|
130. |
Model of calcium oscillations in olfactory cilia (Reidl et al. 2006)
|
131. |
Model of eupnea and sigh generation in respiratory network (Toporikova et al 2015)
|
132. |
Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
|
133. |
Multiple dynamical modes of thalamic relay neurons (Wang XJ 1994)
|
134. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
135. |
Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)
|
136. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
137. |
MyFirstNEURON (Houweling, Sejnowski 1997)
|
138. |
Neocortical pyramidal neuron: deep; effects of dopamine (Durstewitz et al 2000)
|
139. |
Neural mass model of spindle generation in the isolated thalamus (Schellenberger Costa et al. 2016)
|
140. |
Neural mass model of the sleeping thalamocortical system (Schellenberger Costa et al 2016)
|
141. |
New and corrected simulations of synaptic facilitation (Matveev et al. 2002)
|
142. |
NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
|
143. |
Nodose sensory neuron (Schild et al. 1994, Schild and Kunze 1997)
|
144. |
Nonlinear dendritic processing in barrel cortex spiny stellate neurons (Lavzin et al. 2012)
|
145. |
Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
|
146. |
Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
|
147. |
Opposing roles for Na+/Ca2+ exchange and Ca2+-activated K+ currents during STDP (O`Halloran 2020)
|
148. |
Paired turbulence and light effect on calcium increase in Hermissenda (Blackwell 2004)
|
149. |
Pancreatic Beta Cell signalling pathways (Fridlyand & Philipson 2016) (MATLAB)
|
150. |
Paradoxical GABA-mediated excitation (Lewin et al. 2012)
|
151. |
Parallel STEPS: Large scale stochastic spatial reaction-diffusion simulat. (Chen & De Schutter 2017)
|
152. |
Persistent Spiking in ACC Neurons (Ratte et al 2018)
|
153. |
Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015)
|
154. |
Presynaptic calcium dynamics at neuromuscular junction (Stockbridge, Moore 1984)
|
155. |
Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011)
|
156. |
Pyramidal neuron conductances state and STDP (Delgado et al. 2010)
|
157. |
Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001)
|
158. |
Quantal neurotransmitter release kinetics with fixed and mobile Ca2+ buffers (Gilmanov et al. 2008)
|
159. |
Rat LGN Thalamocortical Neuron (Connelly et al 2015, 2016)
|
160. |
Realistic barrel cortical column - Matlab (Huang et al., 2022)
|
161. |
Realistic barrel cortical column - NetPyNE (Huang et al., 2022)
|
162. |
Reciprocal regulation of rod and cone synapse by NO (Kourennyi et al 2004)
|
163. |
Reproducibility and comparability of models for astrocyte Ca2+ excitability (Manninen et al 2017)
|
164. |
Ribbon Synapse (Sikora et al 2005)
|
165. |
Rod photoreceptor (Barnes and Hille 1989, Publio et al. 2006, Kourennyi and Liu et al. 2004)
|
166. |
Salamander retinal ganglian cells: morphology influences firing (Sheasby, Fohlmeister 1999)
|
167. |
Salamander retinal ganglion cell: ion channels (Fohlmeister, Miller 1997)
|
168. |
Simulated light response in rod photoreceptors (Liu and Kourennyi 2004)
|
169. |
Simulation of calcium signaling in fine astrocytic processes (Denizot et al 2019)
|
170. |
Single-cell comprehensive biophysical model of SN pars compacta (Muddapu & Chakravarthy 2021)
|
171. |
Species-specific wiring for direction selectivity in the mammalian retina (Ding et al 2016)
|
172. |
Spike timing detection in different forms of LTD (Doi et al 2005)
|
173. |
Spine neck plasticity controls postsynaptic calcium signals (Grunditz et al. 2008)
|
174. |
Spiny Projection Neuron Ca2+ based plasticity is robust to in vivo spike train (Dorman&Blackwell)
|
175. |
Spontaneous calcium oscillations in astrocytes (Lavrentovich and Hemkin 2008)
|
176. |
Spontaneous calcium oscillations in single astrocytes (Riera et al. 2011) (Manninen et al 2017)
|
177. |
State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013)
|
178. |
STDP depends on dendritic synapse location (Letzkus et al. 2006)
|
179. |
Stochastic automata network Markov model descriptors of coupled Ca2+ channels (Nguyen et al. 2005)
|
180. |
Stochastic calcium mechanisms cause dendritic calcium spike variability (Anwar et al. 2013)
|
181. |
Stochastic model of the olfactory cilium transduction and adaptation (Antunes et al 2014)
|
182. |
Striatal Spiny Projection Neuron (SPN) plasticity rule (Jedrzejewska-Szmek et al 2016)
|
183. |
Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)
|
184. |
Striatum D1 Striosome and Matrix Upstates (Prager et al., 2020)
|
185. |
Syn Plasticity Regulation + Information Processing in Neuron-Astrocyte Networks (Vuillaume et al 21)
|
186. |
Synaptic integration in a model of granule cells (Gabbiani et al 1994)
|
187. |
Temporal decorrelation by intrinsic cellular dynamics (Wang et al 2003)
|
188. |
Thalamic quiescence of spike and wave seizures (Lytton et al 1997)
|
189. |
Thalamic Reticular Network (Destexhe et al 1994)
|
190. |
Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996)
|
191. |
Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
|
192. |
The electrodiffusive neuron-extracellular-glia (edNEG) model (Sætra et al. 2021)
|
193. |
Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
|
194. |
Tonic activation of extrasynaptic NMDA-R promotes bistability (Gall & Dupont 2020)
|
195. |
Tonic neuron in spinal lamina I: prolongation of subthreshold depol. (Prescott and De Koninck 2005)
|
196. |
Transmitter release and Ca diffusion models (Yamada and Zucker 1992)
|
197. |
Two forms of synaptic depression by neuromodulation of presynaptic Ca2+ channels (Burke et al 2018)
|
198. |
Ventricular cell model (Luo Rudy dynamic model) (Luo Rudy 1994) used in (Wang et al 2006) (XPP)
|