Calcium spikes in basal dendrites (Kampa and Stuart 2006)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:108458
This model was published in Kampa & Stuart (2006) J Neurosci 26(28):7424-32. The simulation creates two plots showing voltage and calcium changes in basal dendrites of layer 5 pyramidal neurons during action potential backpropagation. created by B. Kampa (2006)
Reference:
1 . Kampa BM, Stuart GJ (2006) Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J Neurosci 26:7424-32 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex U1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I L high threshold; I T low threshold; I A; I Sodium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Action Potentials; Synaptic Integration; Calcium dynamics;
Implementer(s): Kampa, Bjorn M [Bjoern.Kampa at anu.edu.au];
Search NeuronDB for information about:  Neocortex U1 L5B pyramidal pyramidal tract GLU cell; I L high threshold; I T low threshold; I A; I Sodium; I Potassium;
TITLE K-A channel from Klee Ficker and Heinemann
: modified to account for Dax A Current --- M.Migliore Jun 1997
: modified to be used with cvode  M.Migliore 2001
: modified for Ri18 B.Kampa 2005

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
	celsius		(degC)
	gbar=.008 (mho/cm2)
     		vhalfn=11   (mV)
        	vhalfl=-56   (mV)
        	a0l=0.05      (/ms)
        	a0n=0.05    (/ms)
        	zetan=-1.5    (1)
        	zetal=3    (1)
        	gmn=0.55   (1)
        	gml=1   (1)
	lmin=2  (mS)
	nmin=0.1  (mS)
	pw=-1    (1)
	tq=-40
	qq=5
	q10=5
	qtl=1
	ek
}


NEURON {
	SUFFIX ka
	USEION k READ ek WRITE ik
        RANGE gbar,gka
        GLOBAL ninf,linf,taul,taun,lmin
}

STATE {
	n
        l
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        linf      
        taul
        taun
        gka
}

INITIAL {
	rates(v)
	n=ninf
	l=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	gka = gbar*n*l
	ik = gka*(v-ek)

}


FUNCTION alpn(v(mV)) {
LOCAL zeta
  zeta=zetan+pw/(1+exp((v-tq)/qq))
  alpn = exp(1.e-3*zeta*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
LOCAL zeta
  zeta=zetan+pw/(1+exp((v-tq)/qq))
  betn = exp(1.e-3*zeta*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betl(v(mV)) {
  betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        n' = (ninf - n)/taun
        l' =  (linf - l)/taul
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10)
        a = alpn(v)
        ninf = 1/(1 + a)
        taun = betn(v)/(qt*a0n*(1+a))
	if (taun<nmin) {taun=nmin}
        a = alpl(v)
        linf = 1/(1+ a)
	taul = 0.26*(v+50)/qtl
	if (taul<lmin/qtl) {taul=lmin/qtl}
}















Loading data, please wait...