Carbon nanotubes as electrical interfaces to neurons (Giugliano et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:112086
In the present NEURON model, we explore simple phenomenological models of the extracellular coupling, occurring at the neuron-metal microelectrode junction and (possibly) at the neuron-carbon nanotube junction.
Reference:
1 . Giugliano M, Gambazzi L, Ballerini L, Prato M, Campidelli S (2012) Carbon nanotubes as electrical interfaces to neurons Nanotechnology for Biology and Medicine, Parpura V, Silva GA, ed. pp.187
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus dissociated neuron;
Channel(s): I Na,t; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Extracellular Fields;
Implementer(s): Giugliano, Michele [mgiugliano at gmail.com];
Search NeuronDB for information about:  I Na,t; I Potassium;

Giugliano M, Gambazzi L, Ballerini L, Prato M, Campidelli S (2012) Carbon nanotubes as electrical interfaces to neurons Nanotechnology for Biology and Medicine, Parpura V, Silva GA, ed. pp.187

References and models cited by this paper

References and models that cite this paper

Avouris P,Chen J (2006) Nanotube electronics and optoelectronics Materials Today 9:46-54

Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2:605-15 [Journal] [PubMed]

Avouris P,Radosavljevic M,Wind SJ (2005) Carbon Nanotube Electronics and Optoelectronics Applied Physics of Carbon Nanotubes, Fundamentals of Theory, Optics and Transport Devices, Rotkin SV:Subramoney S, ed. pp.227

Bachtold A,Fuhrer MS,Plyasunov S,Forero M,Anderson EH,Zettl A,McEuen PL (2000) Scanned probe microscopy of electronic transport in carbon nanotubes Phys Rev Lett. 84(26 Pt 1):6082-5

Balavoine F,Schultz P,Richard C,Mallouh V,Ebbesen TW,Mioskowski C (1999) Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors Angew. Chem. Int. Ed. 38:1912-1915

Benabid AL, Wallace B, Mitrofanis J, Xia C, Piallat B, Fraix V, Batir A, Krack P, Pollak P, B (2005) Therapeutic electrical stimulation of the central nervous system. C R Biol 328:177-86 [PubMed]

Bethune DS,Kiang CHM,de Vries S,Gorman G,Savoy R,Vazquez J,Beyers R (1993) Cobalt-catalyzed Growth of Carbon Nanotubes with Single-atomic-layer Walls Nature 363:605-7

Bockris J,Reddy AKN,Gamoa-Aldeco M (2000) Modern Electrochemistry 2A: Fundamentals of Electrodics

Bollobás B (2001) Random graphs

Carnevale NT, Hines ML (2006) The NEURON Book

Cellot G,Cilia E,Cipollone S,Rancic V,Sucapane A,Giordani S,Gambazzi L,Markram H,Grandolfo M, (2009) Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts Nat Nanotechnol 4:126-133

Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NW, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci U S A 100:4984-9 [Journal] [PubMed]

Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838-9 [PubMed]

Chua LO (1980) Device modeling via basic nonlinear circuit elements IEEE Trans. Circuits Syst. 27:1014-44

Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706-9 [Journal] [PubMed]

Correa-Duarte M,Wagner N,Rojas-Chapana J,Morsczeck C,Thie M,Giersig M (2004) Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for Cell Seeding and Growth Nano Letters 4(11):2233-6

Crespo GA, Macho S, Rius FX (2008) Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem 80:1316-22 [Journal] [PubMed]

Czerw R,Edell D,Farrell B,Fooksa R,Phely-Bobin T,Robblee L,Tiano T (2006) Carbon Nanotube Based Electrodes for Neuroprosthetic Applications Material Res. Soc. Symposium Proc. 926:19-24

Dayan P, Abbott LF (2001) Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems

Dieckmann GR, Dalton AB, Johnson PA, Razal J, Chen J, Giordano GM, Muñoz E, Musselman IH, Bau (2003) Controlled assembly of carbon nanotubes by designed amphiphilic Peptide helices. J Am Chem Soc 125:1770-7 [Journal] [PubMed]

Dumortier H,Lacotte S,Pastorin G,Marega R,Wu W,Bonifazi D,Briand JP,Prato M,Muller S,Bianco (2006) Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells Nano Lett. 6:152-8

Freitag M (2006) Carbon nanotube electronics and devices Carbon Nanotubes: Properties and Applicatons, O`Connell MJ , ed. pp.83

Fromherz P (2002) Electrical interfacing of nerve cells and semiconductor chips. Chemphyschem 3:276-84 [Journal] [PubMed]

Fuhrer MS,Forero M,Zettl A,McEuen PL (2001) Ballistic transport in semiconducting carbon nanotubes AIP Conf. Proc. 591:401-404

Gabay T, Ben-david M, Kalifa I, Sorkin R, Abrams ZR, Ben-jacob E, Hanein Y (2007) Electro-chemical biological properties of carbon nanotubebased multi-electrode arrays Nanotechnology 035201:6

Geddes LA (1972) Electrodes the Measurement of Bioelectric Events

Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124:760-1 [PubMed]

Gheith MK, Pappas TC, Liopo AV, Sinani V, Shim BS, Motamedi M, Kotov_na JP (2006) Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes. Adv Mater Deerfield 18:2975-2979

Girault HH (2004) Analytical and chemical electrochemistry.

Giugliano M,Prato M,Ballerini L (2008) Nanomaterial/neuronal hybrid system for functional recovery of the CNS Drug Discov. Today: Disease Model

Gold C, Henze DA, Koch C, Buzsaki G (2006) On the origin of the extracellular action potential waveform: A modeling study. J Neurophysiol 95:3113-28 [Journal] [PubMed]

   Extracellular Action Potential Simulations (Gold et al 2007) [Model]

Graham AP, Duesberg GS, Seidel RV, Liebau M, Unger E, Pamler W, Kreupl F, Hoenlein W (2005) Carbon nanotubes for microelectronics? Small 1:382-90 [Journal] [PubMed]

Grattarola M, Martinoia S (1993) Modeling the neuron-microtransducer junction: from extracellular to patch recording. IEEE Trans Biomed Eng 40:35-41 [PubMed]

Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384:322-35 [Journal] [PubMed]

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17:7-11 [Journal] [PubMed]

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Hu H, Ni Y, Mandal SK, Montana V, Zhao B, Haddon RC, Parpura V (2005) Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J Phys Chem B 109:4285-9 [PubMed]

Hu H,Ni Y,Montana V,Haddon RC,Parpura V (2004) Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth Nano Lett 4:507-11

Iijima S,Ichihashi T (363) Single-shell carbon nanotubes of 1-nm diameter Nature 363:603-5

Iijima S (1991) Helical microtubules of graphitic carbon Nature 354:56-58

Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Be (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88-100 [Journal] [PubMed]

Katz E, Willner I (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. Chemphyschem 5:1084-104 [Journal] [PubMed]

Keefer KW,Botterman BR,Romero MI,Rossi AF,Gross GW (2008) Carbon nanotube coating improves neuronal recordings Nature Nanotech. 3:434-9

Kim WY,Kim KW (2007) Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green’s function method at the level of fi rst principles theory J. Comp. Chem.

Kirckpatrick S (1972) Percolation and conduction Reviews Of Modern Physics 45:574-588

Lam CW,James JT,McCluskey R,Hunter RL (2004) Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days After Intratracheal Instillation Toxicol. Sci. 77:126

Léonard F, Talin AA (2006) Size-dependent effects on electrical contacts to nanotubes and nanowires. Phys Rev Lett 97:026804 [Journal] [PubMed]

Li J,Andrews RJ (2007) Trimodal nanoelectrode array for precise deep brain stimulation: prospects of a new technology based on carbon nanofiber arrays Acta Neurochir. Suppl. 97(Pt 2):537-45

Liopo AV, Stewart MP, Hudson J, Tour JM, Pappas TC (2006) Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface. J Nanosci Nanotechnol 6:1365-74 [PubMed]

Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A 105:1410-5 [Journal] [PubMed]

Llinás RR,Walton KD,Nakao M,Hunter I,Anquetil PA (2005) Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes J. Nanoparticle Res. 7:111-27

Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ba (2005) Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 5:1107-10 [PubMed]

Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47-55 [Journal] [PubMed]

Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121-5 [Journal] [PubMed]

Male KB,Hrapovic S,Luong JH (2007) Electrochemically-assisted deposition of oxidases on platinum nanoparticle/multi-walled carbon nanotube-modified electrodes Analyst 132(12):1254-61

Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153-60 [Journal] [PubMed]

   [241 reconstructed morphologies on NeuroMorpho.Org]

Marom S, Shahaf G (2002) Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Q Rev Biophys 35:63-87 [PubMed]

Martel R, Derycke V, Lavoie C, Appenzeller J, Chan KK, Tersoff J, Avouris P (2001) Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys Rev Lett 87:256805 [Journal] [PubMed]

Martinoia S, Massobrio P, Bove M, Massobrio G (2004) Cultured neurons coupled to microelectrode arrays: circuit models, simulations and experimental data. IEEE Trans Biomed Eng 51:859-64 [Journal] [PubMed]

Matsumoto K, Sato C, Naka Y, Kitazawa A, Whitby RL, Shimizu N (2007) Neurite outgrowths of neurons with neurotrophin-coated carbon nanotubes. J Biosci Bioeng 103:216-20 [Journal] [PubMed]

Mattson MP, Haddon RC, Rao AM (2000) Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 14:175-82 [PubMed]

Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, Prato M, Ballerin (2007) Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci 27:6931-6 [PubMed]

Migliore M, Cannia C, Lytton WW, Markram H, Hines ML (2006) Parallel Network Simulations with NEURON. J Comp Neurosci 21:110-119 [Journal] [PubMed]

   Parallel network simulations with NEURON (Migliore et al 2006) [Model]

Monthioux M,Kuznetsov VL (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon 44(9):1621-3

Moxon KA, Kalkhoran NM, Markert M, Sambito MA, McKenzie JL, Webster JT (2004) Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. IEEE Trans Biomed Eng 51:881-9 [Journal] [PubMed]

Muguruma H, Shibayama Y, Matsui Y (2008) An amperometric biosensor based on a composite of single-walled carbon nanotubes, plasma-polymerized thin film, and an enzyme. Biosens Bioelectron 23:827-32 [Journal] [PubMed]

Pappas TC, Wickramanyake WM, Jan E, Motamedi M, Brodwick M, Kotov NA (2007) Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. Nano Lett 7:513-9 [Journal] [PubMed]

Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100-4 [PubMed]

Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed Engl 43:2113-7 [Journal] [PubMed]

Phely-Bobin TS,Tiano T,Farrell B,Fooksa R,Robblee L,Edell DJ,Czerw R (2006) Carbon Nanotube Based Electrodes for Neuroprosthetic Applications Mat. Res. Soc. Proc. San Francisco Spring Meeting.

Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423-8 [Journal] [PubMed]

RALL W (1962) Electrophysiology of a dendritic neuron model. Biophys J 2(2)Pt 2:145-67 [PubMed]

Razal JM,Gilmore KJ,Wallace GG (2008) Carbon Nanotube Biofiber Formation in a Polymer- Free Coagulation Bath Adv. Funct. Mater 18:61-6

Robinson DA (1968) The electrical properties of metal microelectrodes Proc IEEE 56:1065

Roy S, Vedala H, Roy AD, Kim DH, Doud M, Mathee K, Shin HK, Shimamoto N, Prasad V, Choi W (2008) Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes. Nano Lett 8:26-30 [Journal] [PubMed]

Rutten WL (2002) Selective electrical interfaces with the nervous system. Annu Rev Biomed Eng 4:407-52 [Journal] [PubMed]

Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of graphene tubules based on C60. Phys Rev B Condens Matter 46:1804-1811 [PubMed]

Sato Y, Shibata K, Kataoka H, Ogino S, Bunshi F, Yokoyama A, Tamura K, Akasaka T, Uo M, Motom (2005) Strict preparation and evaluation of water-soluble hat-stacked carbon nanofibers for biomedical application and their high biocompatibility: influence of nanofiber-surface functional groups on cytotoxicity. Mol Biosyst 1:142-5 [Journal] [PubMed]

Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135-42 [Journal] [PubMed]

Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol 89:3143-54 [Journal] [PubMed]

   Pyramidal neuron coincidence detection tuned by dendritic branching pattern (Schaefer et al 2003) [Model]

Schoen I, Fromherz P (2007) The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor. Biophys J 92:1096-111 [Journal] [PubMed]

Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52:205-20 [Journal] [PubMed]

Silva GA (2006) Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci 7:65-74 [PubMed]

Sinha N, Ma J, Yeow JT (2006) Carbon nanotube-based sensors. J Nanosci Nanotechnol 6:573-90 [PubMed]

Sirivisoot S,Yao C,Xiao X,Sheldon BW,Webster TJ (2007) Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titaniu for orthopedic applications Nanotechnology 18:365102

Snow ES,Novak JP,Campbell PM,Park D (2003) Random networks of carbon nanotubes as an electronic material Appl. Phys. Lett. 82:2145

Storace M, Bove M, Grattarola M, Parodi M (1997) Simulations of the behavior of synaptically driven neurons via time-invariant circuit models. IEEE Trans Biomed Eng 44:1282-7 [Journal] [PubMed]

Sucapane A, Cellot G, Prato M, Giugliano M, Parpura V, Ballerini L (2009) Interactions Between Cultured Neurons and Carbon Nanotubes: A Nanoneuroscience Vignette. J Nanoneurosci 1:10-16 [PubMed]

Tans SJ,Verschueren ARM,Dekker C (1998) Room-temperature transistor based on a single carbon nanotube Nature 393:49-52

Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105-36 [Journal] [PubMed]

Traub RD, Miles R (1991) Neuronal Networks Of The Hippocampus

Tsang SC,Guo Z,Chen YK,Green MLH,Hill HAO,Hambley TW,Sadler PJ (1997) Immobilization of Platinated and Iodinated Oligonucleotides on Carbon Nanotubes Angew Chem. Int. Ed. 36:2198-2200

Wang K, Fishman HA, Dai H, Harris JS (2006) Neural stimulation with a carbon nanotube microelectrode array. Nano Lett 6:2043-8 [Journal] [PubMed]

Wörle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261-8 [Journal] [PubMed]

Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes Phys Rev Lett 84:2941-4 [Journal] [PubMed]

Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6:562-7 [Journal] [PubMed]

Zhang M, Liu K, Xiang L, Lin Y, Su L, Mao L (2007) Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain. Anal Chem 79:6559-65 [Journal] [PubMed]

(97 refs)