Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:112685
"... Our results suggest that a complex complement of ionic mechanisms is needed to fine-tune separate aspects of the neuronal response dynamics. Simulations also suggest that the Golgi cell may exploit these mechanisms to obtain a fine regulation of timing of incoming mossy fiber responses and granular layer circuit oscillation and bursting."
References:
1 . Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D'Angelo E (2007) Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Front Cell Neurosci 1:2 [PubMed]
2 . Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D'Angelo E (2007) Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Front Cell Neurosci 1:4 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum golgi cell;
Channel(s): I Na,p; I Na,t; I T low threshold; I A; I K; I M; I K,Ca; I Sodium; I Calcium; I Potassium; I h;
Gap Junctions:
Receptor(s):
Gene(s): HCN1;
Transmitter(s):
Simulation Environment: NEURON; neuroConstruct (web link to model);
Model Concept(s): Activity Patterns; Oscillations;
Implementer(s): D'Angelo, Egidio [dangelo at unipv.it]; De Schutter, Erik [erik at oist.jp];
Search NeuronDB for information about:  I Na,p; I Na,t; I T low threshold; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Files displayed below are from the implementation
/
Golgi_cell
sessions
readme.html
Golgi_BK.mod *
Golgi_Ca_HVA.mod *
Golgi_Ca_LVA.mod *
Golgi_CALC.mod *
Golgi_CALC_ca2.mod *
Golgi_hcn1.mod *
Golgi_hcn2.mod *
Golgi_KA.mod *
Golgi_KM.mod *
Golgi_KV.mod *
Golgi_lkg.mod *
Golgi_Na.mod *
Golgi_NaP.mod *
Golgi_NaR.mod *
Golgi_SK2.mod *
Pregen.mod *
Synapse.mod *
Channel_dynamics.hoc *
Golgi_ComPanel.hoc *
Golgi_count.txt
Golgi_template.hoc
mosinit.hoc
Save_data.hoc *
screenshot.jpg
Start_golgi.hoc
Synapses.hoc *
utils.hoc *
                            
TITLE Cerebellum Golgi Cell HCN2 Model

COMMENT

Author:Sergio Solinas, Lia Forti, Egidio DAngelo
Data from: Santoro et al. J Neurosci. 2000
Last revised: May 2007

Published in:
             Sergio M. Solinas, Lia Forti, Elisabetta Cesana, 
             Jonathan Mapelli, Erik De Schutter and Egidio D`Angelo (2008)
             Computational reconstruction of pacemaking and intrinsic 
             electroresponsiveness in cerebellar golgi cells
             Frontiers in Cellular Neuroscience 2:2

ENDCOMMENT

NEURON {

        SUFFIX Golgi_hcn2
        
	NONSPECIFIC_CURRENT ih
        
	RANGE o_fast_inf, o_slow_inf, tau_f, tau_s, gbar, ehcn2, g
        
	:GLOBAL o_fast_inf, o_slow_inf
}       
        
UNITS {
        
        (mA) = (milliamp)
        
	(mV) = (millivolt)
        
	(S)  = (siemens)
        
}


PARAMETER {
        
	celsius  (degC)

	gbar = 8e-5   (S/cm2)   < 0, 1e9 >

        ehcn2 = -20 (mV)

	Ehalf = -81.95 (mV)
	c = 0.1661 (/mV)

	q_10 = 3
	rA = -0.0227 (/mV)
        rB = -1.4694 (1)
        tCf = 0.0269 (1)
        tDf = -5.6111 (mV)
	tEf = 2.3026 (/mV)
	tCs = 0.0152 (1)
        tDs = -5.2944 (mV)
	tEs = 2.3026 (/mV)
}

ASSIGNED {

	ih		(mA/cm2)

        v               (mV)

	g		(S/cm2)

	o_fast_inf

        o_slow_inf

        tau_f           (ms)

	tau_s           (ms)
        
}



STATE {	o_fast o_slow }


BREAKPOINT {
	
	SOLVE state METHOD cnexp

	g = gbar * (o_fast + o_slow)

        ih = g * (v - ehcn2)

}

DERIVATIVE state {	

	rate(v)

	o_fast' = (o_fast_inf - o_fast) / tau_f

	o_slow' = (o_slow_inf - o_slow) / tau_s

}

LOCAL q

INITIAL {
	
	q = q_10^((celsius -33(degC)) / 10(degC))

	rate(v)

	o_fast = o_fast_inf

	o_slow = o_slow_inf

}

FUNCTION r(potential (mV),r1,r2)  { 	:fraction of fast component in double exponential
    UNITSOFF
    if (potential >= -64.70)  {
	r = 0
    } else{ 
	if (potential <= -108.70)  {
	    r = 1
	} else{ 
	    r =  (r1 * potential) + r2
	}
    }
    UNITSON
}

FUNCTION tau_fast(potential (mV),t1,t2,t3) (ms) { 
	UNITSOFF
        tau_fast = exp(t3 * ((t1 * potential) - t2))
	UNITSON

}

FUNCTION tau_slow(potential (mV) ,t1,t2,t3) (ms) { 
	UNITSOFF
        tau_slow = exp(t3 * ((t1 * potential) - t2))
	UNITSON

}

FUNCTION o_inf(potential (mV),Ehalf,c)  { 
	UNITSOFF
        o_inf = 1 / (1 + exp((potential - Ehalf) * c))
        UNITSON

}

FUNCTION q10(celsius (deg))  { 
	UNITSOFF
        q10 = exp(1.0986 * ((celsius - 33) / 10))
        UNITSON
}

PROCEDURE rate(v (mV)) { 
	TABLE o_fast_inf, o_slow_inf, tau_f, tau_s
	DEPEND celsius FROM -100 TO 30 WITH 13000

	o_fast_inf = r(v,rA,rB) * o_inf(v,Ehalf,c)
        o_slow_inf = (1 - r(v,rA,rB)) * o_inf(v,Ehalf,c)

	tau_f =  tau_fast(v,tCf,tDf,tEf)
	tau_s =  tau_slow(v,tCs,tDs,tEs)
}

Loading data, please wait...