MEG of Somatosensory Neocortex (Jones et al. 2007)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:113732
"... To make a direct and principled connection between the SI (somatosensory primary neocortex magnetoencephalography) waveform and underlying neural dynamics, we developed a biophysically realistic computational SI model that contained excitatory and inhibitory neurons in supragranular and infragranular layers. ... our model provides a biophysically realistic solution to the MEG signal and can predict the electrophysiological correlates of human perception."
Reference:
1 . Jones SR, Pritchett DL, Stufflebeam SM, Hämäläinen M, Moore CI (2007) Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. J Neurosci 27:10751-64 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell;
Channel(s): I T low threshold; I K; I M; I K,Ca; I Sodium; I Calcium; I R;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Magnetoencephalography; Touch;
Implementer(s): Sikora, Michael [Sikora at umn.edu];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; GabaA; GabaB; AMPA; NMDA; I T low threshold; I K; I M; I K,Ca; I Sodium; I Calcium; I R; Gaba; Glutamate;
TITLE Anomalous rectifier current for RD Traub, J Neurophysiol 89:909-921, 2003

COMMENT

	Implemented by Maciej Lazarewicz 2003 (mlazarew@seas.upenn.edu)

ENDCOMMENT

INDEPENDENT { t FROM 0 TO 1 WITH 1 (ms) }

UNITS { 
	(mV) = (millivolt) 
	(mA) = (milliamp) 
} 
NEURON { 
	SUFFIX ar
	NONSPECIFIC_CURRENT i
	RANGE gbar, i
}
PARAMETER { 
	gbar = 0.0 	(mho/cm2)
	v		(mV) 
	erev = -35	(mV)  
} 
ASSIGNED { 
	i 		(mA/cm2) 
	minf 		(1)
	mtau 		(ms) 
} 
STATE {
	m
}
BREAKPOINT { 
	SOLVE states METHOD cnexp
	i = gbar * m * ( v - erev ) 
} 
INITIAL { 
	settables(v) 
	m = minf
	m = 0.25
} 
DERIVATIVE states { 
	settables(v) 
	m' = ( minf - m ) / mtau 
}

UNITSOFF 
PROCEDURE settables(v) { 
	TABLE minf, mtau FROM -120 TO 40 WITH 641
	minf  = 1 / ( 1 + exp( ( v + 75 ) / 5.5 ) )
	mtau = 1 / ( exp( -14.6 - 0.086 * v ) + exp( -1.87 + 0.07 * v ) )
}
UNITSON

Loading data, please wait...