Na+ channel dependence of AP initiation in cortical pyramidal neuron (Kole et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:114394
In this simulation action potential initiation, action potential properties and the role of axon initial segment Na+ channels are investigated in a realistic model of a layer 5 pyramidal neuron axon initial segment. The main Na+ channel properties were constrained by experimental data and the axon initial segment was reconstructed. Model parameters were constrained by direct recordings at the axon initial segment.
Reference:
1 . Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178-86 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 pyramidal corticothalamic L6 cell;
Channel(s): I Na,t; I K; I M; I h;
Gap Junctions:
Receptor(s):
Gene(s): HCN1; HCN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Active Dendrites; Axonal Action Potentials; Action Potentials;
Implementer(s): Kole, Maarten [m.kole at nin.knaw.nl];
Search NeuronDB for information about:  Neocortex V1 pyramidal corticothalamic L6 cell; I Na,t; I K; I M; I h;
 
/
NN_kole
readme.html
h.mod
Km.mod *
kv.mod *
Kv1.mod
na.mod *
nax.mod *
A3+AIS_original.hoc
figure6a.hoc
initiate_neuron.hoc
mosinit.hoc
panels.ses
screenshot.jpg
screenshot_adjust.jpg
screenshot_morphology.jpg
                            
File not selected

<- Select file from this column.
Loading data, please wait...