Thalamic interneuron multicompartment model (Zhu et al. 1999)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:116862
This is an attempt to recreate a set of simulations originally performed in 1994 under NEURON version 3 and last tested in 1999. When I ran it now it did not behave exactly the same as previously which I suspect is due to some minor mod file changes on my side rather than due to any differences among versions. After playing around with the parameters a little bit I was able to get something that looks generally like a physiological trace in J Neurophysiol, 81:702--711, 1999, fig. 8b top trace. This sad preface is simply offered in order to encourage anyone who is interested in this model to make and post fixes. I'm happy to help out. Simulation by JJ Zhu To run nrnivmodl nrngui.hoc
References:
1 . Zhu JJ, Uhlrich DJ, Lytton WW (1999) Burst firing in identified rat geniculate interneurons. Neuroscience 91:1445-60 [PubMed]
2 . Zhu JJ, Lytton WW, Xue JT, Uhlrich DJ (1999) An intrinsic oscillation in interneurons of the rat lateral geniculate nucleus. J Neurophysiol 81:702-11 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Thalamus;
Cell Type(s):
Channel(s): I Na,t; I L high threshold; I T low threshold; I K,leak; I h; I K,Ca; I CAN;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Oscillations;
Implementer(s): Zhu, J. Julius [jjzhu at virginia.edu];
Search NeuronDB for information about:  I Na,t; I L high threshold; I T low threshold; I K,leak; I h; I K,Ca; I CAN;
/
b09jan13
readme.html
AMPA.mod
cadecay.mod
clampex.mod *
cp.mod *
cp2.mod *
GABAA.mod
GABAB.mod
HH2.mod *
Iahp.mod *
Ican.mod *
Ih.mod *
IL.mod
IL3.mod *
IT.mod *
IT2.mod *
kdr2.mod *
kleak.mod *
kmbg.mod
naf2.mod *
nap.mod *
NMDA.mod
nthh.mod *
ntIh.mod *
ntleak.mod
ntt.mod *
pregencv.mod
vecst.mod
batch_.hoc
bg_cvode.inc
misc.h
mosinit.hoc *
netcon.inc
screenshot.jpg
                            
: $Id: nthh.mod,v 1.6 1998/08/14 20:52:37 billl Exp $
TITLE Hippocampal HH channels
:
: Fast Na+ and K+ currents responsible for action potentials
: Iterative equations.  final check on save
:
: Equations modified by Traub, for Hippocampal Pyramidal cells, in:
: Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991
:
: range variable vtraub adjust threshold
:
: Written by Alain Destexhe, Salk Institute, Aug 1992
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX hh2
	USEION na READ ena WRITE ina
	USEION k READ ek WRITE ik
	RANGE gnabar, gkbar, vtraub, inaf, ikf
	GLOBAL m_inf, h_inf, n_inf
	GLOBAL tau_m, tau_h, tau_n
	GLOBAL m_exp, h_exp, n_exp, exptemp
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	gnabar	= .135 	(mho/cm2)
	gkbar	= .270 	(mho/cm2)

	ena	= 50	(mV)
	ek	= -95	(mV)
	celsius = 36    (degC)
        exptemp = 36
	dt              (ms)
	v               (mV)
	vtraub	= -63	(mV)
}

STATE {
	m h n
}

INITIAL {
	tadj = 3.0 ^ ((celsius-exptemp)/ 10 )
	evaluate_fct(v)
	m = m_inf
        h = h_inf
	n = n_inf
}

ASSIGNED {
	ina	(mA/cm2)
	ik	(mA/cm2)
	inaf	(mA/cm2)
	ikf	(mA/cm2)
        il	(mA/cm2)
	m_inf
	h_inf
	n_inf
	tau_m
	tau_h
	tau_n
	m_exp
	h_exp
	n_exp
	tadj
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	inaf = gnabar * m*m*m*h * (v - ena)
	ikf  = gkbar * n*n*n*n * (v - ek)
        ina = inaf
        ik  = ikf
}

DERIVATIVE states {   : exact Hodgkin-Huxley equations
	evaluate_fct(v)
	m' = (m_inf - m) / tau_m
	h' = (h_inf - h) / tau_h
	n' = (n_inf - n) / tau_n
}

:   PROCEDURE states() {	: exact when v held constant
:           evaluate_fct(v)
:           m = m + m_exp * (m_inf - m)
:           h = h + h_exp * (h_inf - h)
:           n = n + n_exp * (n_inf - n)
:           VERBATIM
:           return 0;
:           ENDVERBATIM
:   }

UNITSOFF

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2


	v2 = v - vtraub : convert to traub convention

	a = 0.32 * (13-v2) / ( exp((13-v2)/4) - 1)
	b = 0.28 * (v2-40) / ( exp((v2-40)/5) - 1)
	tau_m = 1 / (a + b) / tadj
	m_inf = a / (a + b)

	a = 0.128 * exp((17-v2)/18)
	b = 4 / ( 1 + exp((40-v2)/5) )
	tau_h = 1 / (a + b) / tadj
	h_inf = a / (a + b)

	a = 0.032 * (15-v2) / ( exp((15-v2)/5) - 1)
	b = 0.5 * exp((10-v2)/40)
	tau_n = 1 / (a + b) / tadj
	n_inf = a / (a + b)

	m_exp = 1 - exp(-dt/tau_m)
	h_exp = 1 - exp(-dt/tau_h)
	n_exp = 1 - exp(-dt/tau_n)
}

UNITSON









Loading data, please wait...