Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:123623
"We review here the development of Hodgkin- Huxley (HH) type models of cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the four most prominent electrophysiological classes of neurons. These four classes are 'fast spiking', 'regular spiking', 'intrinsically bursting' and 'low-threshold spike' cells. For each class, we fit 'minimal' HH type models to experimental data. ..."
Reference:
1 . Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y, Markram H, Destexhe A (2008) Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biol Cybern 99:427-41 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Channel/Receptor;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I Na,t; I L high threshold; I T low threshold; I K; I M;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Parameter Fitting; Simplified Models;
Implementer(s): Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; I Na,t; I L high threshold; I T low threshold; I K; I M;
/
PospischilEtAl2008
README.html *
cadecay_destexhe.mod *
HH_traub.mod *
IL_gutnick.mod
IM_cortex.mod *
IT_huguenard.mod *
demo_IN_FS.hoc *
demo_PY_IB.hoc *
demo_PY_IBR.hoc *
demo_PY_LTS.hoc *
demo_PY_RS.hoc *
fig5b.jpg *
mosinit.hoc *
rundemo.hoc *
sIN_template *
sPY_template *
sPYb_template *
sPYbr_template *
sPYr_template *
                            
TITLE Low threshold calcium current
:
:   Ca++ current responsible for low threshold spikes (LTS)
:   THALAMOCORTICAL CELLS
:   Differential equations
:
:   Model based on the data of Huguenard & McCormick, J Neurophysiol
:   68: 1373-1383, 1992 and Huguenard & Prince, J Neurosci.
:   12: 3804-3817, 1992.
:
:   Features:
:
:	- kinetics described by Nernst equations using a m2h format
:	- activation considered at steady-state
:	- inactivation fit to Huguenard's data using a bi-exp function
:	- shift for screening charge, q10 of inactivation of 3
:
:
:   Written by Alain Destexhe, Salk Institute, 1993; modified 1995
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX it
	USEION ca READ cai,cao WRITE ica
	GLOBAL q10
	RANGE gcabar, m_inf, tau_m, h_inf, tau_h, shift
}

UNITS {
	(molar) = (1/liter)
	(mV) =	(millivolt)
	(mA) =	(milliamp)
	(mM) =	(millimolar)

	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
}

PARAMETER {
	v		(mV)
	celsius	= 36	(degC)
	gcabar	= 0.002	(mho/cm2)
	q10	= 3			: Q10 of inactivation
	shift	= 2 	(mV)		: corresponds to 2mM ext Ca++
	cai	= 2.4e-4 (mM)		: adjusted for eca=120 mV
	cao	= 2	(mM)
}

STATE {
	h
}

ASSIGNED {
	ica	(mA/cm2)
	carev	(mV)
	m_inf
	tau_m	(ms)			: dummy variable for compatibility
	h_inf
	tau_h	(ms)
	phi_h
}

BREAKPOINT {
	SOLVE castate METHOD cnexp
	carev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai)
	ica = gcabar * m_inf * m_inf * h * (v-carev)
}

DERIVATIVE castate {
	evaluate_fct(v)

	h' = (h_inf - h) / tau_h
}


UNITSOFF
INITIAL {
	h = 0

:
:   Transformation to 36 deg assuming Q10 of 3 for h
:   (as in Coulter et al., J Physiol 414: 587, 1989)
:
	phi_h = q10 ^ ((celsius-24 (degC) )/10 (degC) )
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL Vm

	Vm = v + shift

	m_inf = 1.0 / ( 1 + exp(-(Vm+57)/6.2) )
	h_inf = 1.0 / ( 1 + exp((Vm+81)/4.0) )

:	if(Vm < -80) {
:		tau_h = exp((Vm+467)/66.6) / phi_h
:	} else {
:		tau_h = ( 28 + exp(-(Vm+22)/10.5) ) / phi_h
:	}

	tau_h = 30.8 + (211.4 + exp((Vm+113.2)/5)) / (1 + exp((Vm+84)/3.2))

	tau_h = tau_h / phi_h

}

UNITSON

Loading data, please wait...