A network model of the vertebrate retina (Publio et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:124063
In this work, we use a minimal conductance-based model of the ON rod pathways in the vertebrate retina to study the effects of electrical synaptic coupling via gap junctions among rods and among AII amacrine cells on the dynamic range of the retina. The model is also used to study the effects of the maximum conductance of rod hyperpolarization activated current Ih on the dynamic range of the retina, allowing a study of the interrelations between this intrinsic membrane parameter with those two retina connectivity characteristics.
Reference:
1 . Publio R, Oliveira RF, Roque AC (2009) A computational study on the role of gap junctions and rod Ih conductance in the enhancement of the dynamic range of the retina. PLoS One 4:e6970 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Retina ganglion GLU cell; Retina photoreceptor cone GLU cell; Retina bipolar GLU cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s):
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Sensory processing;
Implementer(s): Publio, Rodrigo [publio at oist.jp];
Search NeuronDB for information about:  Retina ganglion GLU cell; Retina photoreceptor cone GLU cell; Retina bipolar GLU cell; Glutamate;
/
PublioEtAl2009
README.html
A2hh_k.mod
A2hh_na.mod
Bip_Ca.mod
Bip_Cad.mod
Bip_ih.mod
Bip_Ka.mod
Bip_Kv.mod
Cone_CPR.mod
Cone_ih.mod
Cone_Kv.mod
Ganglion_hh.mod *
gap.mod
IinjLT.mod
IinjLT_cone.mod
IinjLTDim.mod *
Rod_Ca.mod
Rod_Cad.mod
Rod_Clca.mod
Rod_ih.mod
Rod_Kca.mod
Rod_Kv.mod
Rod_Kx.mod
Rod_leak.mod
syn_bip_gan.mod
syn_rod_bip.mod
A2.tem
Bip.tem
Cone.tem
createcells.hoc
Ganglion.tem
gap.hoc *
init.hoc
mosinit.hoc *
netconnection.hoc
parameters.hoc
Rod.tem
screenshot1.jpg
screenshot2.jpg
session.ses
                            
: Rod  Photoreceptor Ca and Calcium  channel
: Ref. Kourenny and  Liu 2002   ABME 30 : 1196-1203
: Modification 2004-02-07
NEURON 
{
	SUFFIX Ca
	
	USEION Ca WRITE iCa VALENCE 2
        RANGE gCabar,VhalfCam,SCam
        RANGE VhalfCah,SCah
        RANGE eCa,aomCa,bomCa
        RANGE gammaohCa,deltaohCa


}

UNITS
{
	(mA) = (milliamp)
	(mV) = (millivolt)
	(mS) = (millimho)
	(mol)= (1)
	(M)  = (mol/liter)
	(uM) = (micro M)
}

PARAMETER
{
       
       : Calcium channel 
       gCabar = 4 (mS/cm2) <0,1e9> :different from ABME paper
       eCa =  40 (mV)
       aomCa = 100  (/s)  : changed from 3.10/s, 20/s
       bomCa = 100  (/s)
       gammaohCa = 10 (/s)
       deltaohCa =10 (/s)  
 
       VhalfCam=-10.0 (mV)
       VhalfCah=11 (mV)
       SCam =6.0      (mV) 
       
       SCah =9        (mV)   
     
}


STATE
{

	mCa
	hCa
	
}

ASSIGNED
{
	gCa (mho/cm2)
    
	v (mV)
	
	iCa (mA/cm2)

	infmCa
	taumCa  (ms) 
	


	infhCa
	tauhCa (ms)



}

INITIAL
{
	rate(v)
	mCa = infmCa
	hCa = infhCa

}




BREAKPOINT
{
	SOLVE states METHOD cnexp
	gCa = (0.001)*gCabar*mCa*hCa
	: g is in unit of S/cm2 ,i is in unit of mA/cm2 and v is in mV
	
	iCa = gCa*(v - eCa)
	: the current is in the unit of mA/cm2
	
	
}

DERIVATIVE states
{
	rate(v)
	mCa' = (infmCa - mCa)/taumCa
	hCa'= (infhCa-hCa)/tauhCa


}




FUNCTION alphamCa(v(mV))(/ms)
{ 
	alphamCa = 0.001*aomCa*exp( (v - VhalfCam)/(2*SCam)   )
}

FUNCTION betamCa(v(mV))(/ms)
{ 
	betamCa = 0.001*bomCa*exp( - ( v-VhalfCam)/(2*SCam) )
}
FUNCTION gammahCa(v(mV))(/ms)
{ 
	gammahCa = 0.001*gammaohCa*exp( (v - VhalfCah)/(2*SCah))
}

FUNCTION deltahCa(v(mV))(/ms)
{ 
	deltahCa = 0.001*deltaohCa*exp( - ( v-VhalfCah)/(2*SCah) )
}


PROCEDURE rate(v (mV))
{
        LOCAL a, b,c, d


	a = alphamCa(v)
	b = betamCa(v)
	taumCa = 1/(a + b)
	infmCa = a/(a + b)
	
	c = gammahCa(v)
	d = deltahCa(v)
	tauhCa = 1/(c + d)
	infhCa = d/(c + d)

}


Loading data, please wait...