A network model of the vertebrate retina (Publio et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
In this work, we use a minimal conductance-based model of the ON rod pathways in the vertebrate retina to study the effects of electrical synaptic coupling via gap junctions among rods and among AII amacrine cells on the dynamic range of the retina. The model is also used to study the effects of the maximum conductance of rod hyperpolarization activated current Ih on the dynamic range of the retina, allowing a study of the interrelations between this intrinsic membrane parameter with those two retina connectivity characteristics.
1 . Publio R, Oliveira RF, Roque AC (2009) A computational study on the role of gap junctions and rod Ih conductance in the enhancement of the dynamic range of the retina. PLoS One 4:e6970 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Retina ganglion cell; Retina photoreceptor cone cell; Retina bipolar cell;
Gap Junctions: Gap junctions;
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Sensory processing;
Implementer(s): Publio, Rodrigo [publio at oist.jp];
Search NeuronDB for information about:  Retina ganglion cell; Retina photoreceptor cone cell; Retina bipolar cell; Glutamate;
Ganglion_hh.mod *
IinjLTDim.mod *
gap.hoc *
mosinit.hoc *

Publio R, Oliveira RF, Roque AC (2009) A computational study on the role of gap junctions and rod Ih conductance in the enhancement of the dynamic range of the retina. PLoS One 4:e6970[PubMed]

References and models cited by this paper

References and models that cite this paper

Awatramani GB, Slaughter MM (2001) Intensity-dependent, rapid activation of presynaptic metabotropic glutamate receptors at a central synapse. J Neurosci 21:741-9 [PubMed]

Baylor DA, Matthews G, Nunn BJ (1984) Location and function of voltage-sensitive conductances in retinal rods of the salamander, Ambystoma tigrinum. J Physiol 354:203-23 [PubMed]

Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167-77 [PubMed]

Berntson A, Smith RG, Taylor WR (2008) Postsynaptic calcium feedback between rods and rod bipolar cells in the mouse retina. Vis Neurosci 21:913-24

Boos R, Schneider H, Wassle H (1993) Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina. J Neurosci 13:2874-88 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Copelli M, Oliveira RF, Roque AC, Kinouchi O (2005) Signal compression in the sensory periphery Neurocomputing 65:691-696

Copelli M, Roque AC, Oliveira RF, Kinouchi O (2002) Physics of psychophysics: Stevens and weber-fechner laws are transfer functions of excitable media. Phys Rev E 65:060901

Deans MR, Volgyi B, Goodenough DA, Bloomfield SA, Paul DL (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36:703-12 [PubMed]

Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102-9 [PubMed]

Fohlmeister JF, Miller RF (1997) Impulse encoding mechanisms of ganglion cells in the tiger salamander retina. J Neurophysiol 78:1935-47 [Journal] [PubMed]

   Salamander retinal ganglion cell: ion channels (Fohlmeister, Miller 1997) [Model]

Furtado LS, Copelli M (2006) Response of electrically coupled spiking neurons: A cellular automaton approach. Physical Review E 73:011907

Hennig MH, Adams C, Willshaw D, Sernagor E (2009) Early-stage waves in the retinal network emerge close to a critical state transition between local and global functional connectivity. J Neurosci 29:1077-86

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Hornstein EP, Verweij J, Li PH, Schnapf JL (2005) Gap-junctional coupling and absolute sensitivity of photoreceptors in macaque retina. J Neurosci 25:11201-9 [PubMed]

Jacoby RA, Wu SM (2008) AMPA-preferring receptors mediate excitatory non-NMDA responses of primate retinal ganglion cells. Vis Neurosci 18:703-10 [PubMed]

Jones GJ (1995) Light adaptation and the rising phase of the flash photocurrent of salamander retinal rods. J Physiol 487 ( Pt 2):441-51 [PubMed]

Kamiyama Y, Ogura T, Usui S (1996) Ionic current model of the vertebrate rod photoreceptor. Vision Res 36:4059-68 [PubMed]

Kaneko A, Pinto LH, Tachibana M (1989) Transient calcium current of retinal bipolar cells of the mouse. J Physiol 410:613-29 [PubMed]

Kinouchi O, Copelli M (2006) Optimal dynamical range of excitable networks at criticality Nature Physics 2:348-351

Kitzbichler MG, Smith ML, Christensen SR, Bullmore E (2009) Broadband criticality of human brain network synchronization. PLoS Comput Biol 5:e1000314-9 [PubMed]

Kourennyi DE, Liu XD, Hart J, Mahmud F, Baldridge WH, Barnes S (2004) Reciprocal modulation of calcium dynamics at rod and cone photoreceptor synapses by nitric oxide. J Neurophysiol 92:477-83 [Journal] [PubMed]

   Rod photoreceptor (Barnes and Hille 1989, Publio et al. 2006, Kourennyi and Liu et al. 2004) [Model]
   Reciprocal regulation of rod and cone synapse by NO (Kourennyi et al 2004) [Model]

Lagnado L (2003) Ribbon synapses. Curr Biol 13:R631-60

Li W, DeVries SH (2004) Separate blue and green cone networks in the mammalian retina. Nat Neurosci 7:751-6

Liu XD, Kourennyi DE (2004) Effects of tetraethylammonium on Kx channels and simulated light response in rod photoreceptors. Ann Biomed Eng 32:1428-42 [PubMed]

   Rod photoreceptor (Barnes and Hille 1989, Publio et al. 2006, Kourennyi and Liu et al. 2004) [Model]
   Simulated light response in rod photoreceptors (Liu and Kourennyi 2004) [Model]

Ma YP, Cui J, Hu HJ, Pan ZH (2003) Mammalian retinal bipolar cells express inwardly rectifying K+ currents (IKir) with a different distribution than that of Ih. J Neurophysiol 90:3479-89 [PubMed]

Mao BQ, MacLeish PR, Victor JD (2003) Role of hyperpolarization-activated currents for the intrinsic dynamics of isolated retinal neurons. Biophys J 84:2756-67 [PubMed]

Mukai S, Mishima HK, Shoge K, Shinya M, Ishihara K, Sasa M (2002) Existence of ionotropic glutamate receptor subtypes in cultured rat retinal ganglion cells obtained by the magnetic cell sorter method and inhibitory effects of 20-hydroxyecdysone, a neurosteroid, on the glutamate response. Jpn J Pharmacol 89:44-52 [PubMed]

Mulloney B (2003) During fictive locomotion, graded synaptic currents drive bursts of impulses in swimmeret motor neurons. J Neurosci 23:5953-62 [PubMed]

Ogura T, Satoh TO, Usui S, Yamada M (2003) A simulation analysis on mechanisms of damped oscillation in retinal rod photoreceptor cells. Vision Res 43:2019-28 [PubMed]

Petrides A, Trexler EB (2008) Differential output of the high-sensitivity rod photoreceptor: AII amacrine pathway. J Comp Neurol 507:1653-62 [PubMed]

Publio R, Oliveira RF, Roque AC (2006) A realistic model of rod photoreceptor for use in a retina network model Neurocomputing 69:1020-1024 [Journal]

   Rod photoreceptor (Barnes and Hille 1989, Publio et al. 2006, Kourennyi and Liu et al. 2004) [Model]

Pugh EN, Lamb TD (2000) Phototransduction in vertebrate rods and cones: molecular mechanisms ofamplification, recovery and light adaptation Handbook of Biological Physics, Molecular Mechanisms of Visual Transduction, Stavenga DG:de_Grip WJ:Pugh EN, ed. pp.183

Rodieck RW (1988) The primate retina. Comp Primate Biol 4:203-278

Shew WL, Yang H, Petermann T, Roy R, Plenz D (2009) Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J Neurosci 29:15595-600 [PubMed]

Sikora MA, Gottesman J, Miller RF (2005) A computational model of the ribbon synapse. J Neurosci Methods 145:47-61 [Journal] [PubMed]

   Ribbon Synapse (Sikora et al 2005) [Model]

Smith RG, Vardi N (2007) Simulation of the AII amacrine cell of mammalian retina: functional consequences of electrical coupling and regenerative membrane properties. Vis Neurosci 12:851-60

Sterling P, Freed MA, Smith RG (1988) Architecture of rod and cone circuits to the on-beta ganglion cell. J Neurosci 8:623-42 [PubMed]

Stevens S (1975) Psychophysics: Introduction to its Perceptual, Neural and Social Prospects

Tessier-Lavigne M, Attwell D (1988) The effect of photoreceptor coupling and synapse nonlinearity on signal:noise ratio in early visual processing. Proc R Soc Lond B Biol Sci 234:171-97 [PubMed]

Usui S, Ishihara A, Kamiyama Y, Ishii H (1996) Ionic current model of bipolar cells in the lower vertebrate retina. Vision Res 36:4069-76 [PubMed]

Vardi N, Smith RG (1996) The AII amacrine network: coupling can increase correlated activity. Vision Res 36:3743-57 [PubMed]

Veruki ML, Hartveit E (2009) Meclofenamic acid blocks electrical synapses of retinal AII amacrine and on-cone bipolar cells. J Neurophysiol 101:2339-47 [PubMed]

Veruki ML, Oltedal L, Hartveit E (2008) Electrical synapses between AII amacrine cells: dynamic range and functional consequences of variation in junctional conductance. J Neurophysiol [Journal] [PubMed]

Volgyi B, Deans MR, Paul DL, Bloomfield SA (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24:11182-92 [PubMed]

von Gersdorff H (2001) Synaptic ribbons: versatile signal transducers. Neuron 29:7-10 [PubMed]

Zhang J, Wu SM (2005) Physiological properties of rod photoreceptor electrical coupling in the tiger salamander retina. J Physiol 564:849-62 [PubMed]

Orio P, Parra A, Madrid R, Gonzalez O, Belmonte C, Viana F (2012) Role of Ih in the firing pattern of mammalian cold thermoreceptor endings J Neurophysiol 108(11):3009-23 [Journal] [PubMed]

   Role of Ih in firing patterns of cold thermoreceptors (Orio et al., 2012) [Model]

Parasuram H, Nair B, D`Angelo E, Hines M, Naldi G, Diwakar S (2016) Computational modeling of single neuron extracellular electric potentials and network Local Field Potentials using LFPsim Front. Comput. Neurosci. 10:65 [Journal]

   Modeling single neuron LFPs and extracellular potentials with LFPsim (Parasuram et al. 2016) [Model]

(50 refs)