Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:124513
This model was implemented by Rob Morgan in the Soltesz lab at UC Irvine. It is a scaleable model of the rat dentate gyrus including four cell types. This model runs in serial (on a single processor) and has been published at the size of 50,000 granule cells (with proportional numbers of the other cells).
Reference:
1 . Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53 [PubMed]
2 . Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97:1566-87 [PubMed]
3 . Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105:6179-84 [PubMed]
4 . Morgan RJ, Santhakumar V, Soltesz I (2007) Modeling the dentate gyrus. Prog Brain Res 163:639-58 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Dentate gyrus;
Cell Type(s): Dentate gyrus granule cell; Dentate gyrus mossy cell; Dentate gyrus basket cell; Dentate gyrus hilar cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Epilepsy;
Implementer(s): Bezaire, Marianne [mariannejcase at gmail.com]; Morgan, Robert [polomav at gmail.com];
Search NeuronDB for information about:  Dentate gyrus granule cell;
Files displayed below are from the implementation
/
dentate_gyrus
500net
README.html
bgka.mod *
CaBK.mod
ccanl.mod *
Gfluct2.mod
gskch.mod *
hyperde3.mod *
ichan2.mod *
inhsyn.mod
LcaMig.mod *
nca.mod
ppsyn.mod
tca.mod *
50knet.hoc
bcdist.hoc
bcell.bcell
bcell.gcell
bcell.hcell *
bcell.mcell
gcdist.hoc
gcell.bcell
gcell.gcell
gcell.hcell
gcell.mcell
hcdist.hoc
hcell.bcell
hcell.gcell
hcell.hcell *
hcell.mcell
mcdist.hoc
mcell.bcell
mcell.gcell
mcell.hcell
mcell.mcell
mosinit.hoc
parameters.dat
pbc.hoc
pgc.hoc
phc.hoc
pmc.hoc
run50knet.bash
screenshot.jpg
                            

Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53[PubMed]

References and models cited by this paper

References and models that cite this paper

Aaron GB, Dichter MA (2001) Excitatory synapses from CA3 pyramidal cells onto neighboring pyramidal cells differ from those onto inhibitory interneurons. Synapse 42:199-202

Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18:3386-403 [PubMed]

Acsady L, Katona I, Buzsaki G, Freund TF (1998) Selective perisomatic innervation of hilar interneurons and mossy cells by local gabaergic afferents Eur J Neurosci 10:41

Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182:851-914 [PubMed]

Annegers JF, Coan SP (2000) The risks of epilepsy after traumatic brain injury. Seizure 9:453-7

Aradi I, Holmes WR (1999) Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci 6:215-35 [Journal] [PubMed]

   Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999) [Model]

Aradi I, Soltesz I (2002) Modulation of network behaviour by changes in variance in interneuronal properties. J Physiol 538:227-51 [PubMed]

Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci 21:2687-98 [PubMed]

   Dentate Basket Cell: spatial summation of inhibitory synaptic inputs (Bartos et al 2001) [Model]

Bikson M, Hahn PJ, Fox JE, Jefferys JG (2003) Depolarization block of neurons during maintenance of electrographic seizures. J Neurophysiol 90:2402-8 [PubMed]

Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA (1998) Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med 4:1166-72 [PubMed]

Bruton C (1988) The Neuropathology of Temporal Lobe Epilepsy

Buckmaster PS, Dudek FE (1997) Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol 385:385-404

Buckmaster PS, Dudek FE (1999) In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. J Neurophysiol 81:712-21 [Journal] [PubMed]

Buckmaster PS, Strowbridge BW, Kunkel DD, Schmiege DL, Schwartzkroin PA (1992) Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice. Hippocampus 2:349-62 [PubMed]

Buckmaster PS, Strowbridge BW, Schwartzkroin PA (1993) A comparison of rat hippocampal mossy cells and CA3c pyramidal cells. J Neurophysiol 70:1281-99 [Journal]

Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366:271-92

Buckmaster PS, Yamawaki R, Zhang GF (2002) Axon arbors and synaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo. J Comp Neurol 445:360-73 [PubMed]

Buckmaster PS, Zhang GF, Yamawaki R (2002) Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci 22:6650-8 [PubMed]

Buhl EH, Otis TS, Mody I (1996) Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 271:369-73 [PubMed]

Bush PC, Prince DA, Miller KD (1999) Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition: a model. J Neurophysiol 82:1748-58 [Journal] [PubMed]

   Cortical network model of posttraumatic epileptogenesis (Bush et al 1999) [Model]

Chen K, Aradi I, Thon N, Eghbal-Ahmadi M, Baram TZ, Soltesz I (2001) Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat Med 7:331-7 [PubMed]

   Febrile seizure-induced modifications to Ih (Chen et al 2001) [Model]

Chen K, Baram TZ, Soltesz I (1999) Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5:888-94 [PubMed]

Collingridge GL, Gage PW, Robertson B (1984) Inhibitory post-synaptic currents in rat hippocampal CA1 neurones. J Physiol 356:551-64 [PubMed]

Coulter DA (1999) Chronic epileptogenic cellular alterations in the limbic system after status epilepticus. Epilepsia 40 Suppl 1:S23-33; discussion S40-1

Coulter DA (2000) Mossy fiber zinc and temporal lobe epilepsy: pathological association with altered "epileptic" gamma-aminobutyric acid A receptors in dentate granule cells. Epilepsia 41 Suppl 6:S96-9

Coulter DA (2001) Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int Rev Neurobiol 45:237-52 [PubMed]

Coulter DA, Rafiq A, Shumate M, Gong QZ, DeLorenzo RJ, Lyeth BG (1996) Brain injury-induced enhanced limbic epileptogenesis: anatomical and physiological parallels to an animal model of temporal lobe epilepsy. Epilepsy Res 26:81-91

Desmond NL, Levy WB (1985) Granule cell dendritic spine density in the rat hippocampus varies with spine shape and location. Neurosci Lett 54:219-24 [PubMed]

Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13-24 [PubMed]

   Fluctuating synaptic conductances recreate in-vivo-like activity (Destexhe et al 2001) [Model]

Feng L, Molnar P, Nadler JV (2003) Short-term frequency-dependent plasticity at recurrent mossy fiber synapses of the epileptic brain. J Neurosci 23:5381-90

Foldy C, Aradi I, Howard A, Soltesz I (2004) Diversity beyond variance: modulation of firing rates and network coherence by GABAergic subpopulations. Eur J Neurosci 19:119-30 [Journal] [PubMed]

Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347-470 [PubMed]

Fricke RA, Prince DA (1984) Electrophysiology of dentate gyrus granule cells. J Neurophysiol 51:195-209 [Journal] [PubMed]

Geiger JR, Lubke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18:1009-23 [PubMed]

   Fast AMPA receptor signaling (Geiger et al 1997) [Model]

Golarai G, Greenwood AC, Feeney DM, Connor JA (2001) Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci 21:8523-37

Gutierrez R (2002) Activity-dependent expression of simultaneous glutamatergic and GABAergic neurotransmission from the mossy fibers in vitro. J Neurophysiol 87:2562-70 [Journal]

Hama K, Arii T, Kosaka T (1994) Three-dimensional organization of neuronal and glial processes: high voltage electron microscopy. Microsc Res Tech 29:357-67

Harney SC, Jones MV (2002) Pre- and postsynaptic properties of somatic and dendritic inhibition in dentate gyrus. Neuropharmacology 43:584-94

Heinemann U, Beck H, Dreier JP, Ficker E, Stabel J, Zhang CL (1992) The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res Suppl 7:273-80 [PubMed]

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]

Houser CR (1999) Neuronal loss and synaptic reorganization in temporal lobe epilepsy. Adv Neurol 79:743-61

Ishizuka S, Kosaka T (1998) Physiological properties of mouse hippocampal mossy cells. Neuroreport 9:193-9

Jennett B (1975) Epilepsy After Nonmissile Head Injuries

Jeub M, Lie A, Blumcke I, Elger CE, Beck H (1999) Loss of dynorphin-mediated inhibition of voltage-dependent Ca2+ currents in hippocampal granule cells isolated from epilepsy patients is associated with mossy fiber sprouting. Neuroscience 94:465-71

Johnston D, Magee JC, Colbert CM, Cristie BR (1996) Active properties of neuronal dendrites. Annu Rev Neurosci 19:165-86 [PubMed]

Kneisler TB, Dingledine R (1995) Synaptic input from CA3 pyramidal cells to dentate basket cells in rat hippocampus. J Physiol 487 ( Pt 1):125-46 [PubMed]

Kneisler TB, Dingledine R (1995) Spontaneous and synaptic input from granule cells and the perforant path to dentate basket cells in the rat hippocampus. Hippocampus 5:151-64 [PubMed]

Kraushaar U, Jonas P (2000) Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J Neurosci 20:5594-607 [PubMed]

Lawrence JJ, Grinspan ZM, McBain CJ (2004) Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus. J Physiol 554:175-93 [PubMed]

Lothman EW, Stringer JL, Bertram EH (1992) The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res Suppl 7:301-13 [PubMed]

Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK (1992) Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci 12:4846-53 [PubMed]

Lubke J, Frotscher M, Spruston N (1998) Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. J Neurophysiol 79:1518-34 [Journal] [PubMed]

Lytton WW, Hellman KM, Sutula TP (1998) Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artif Intell Med 13:81-97 [PubMed]

MacVicar BA, Dudek FE (1982) Electrotonic coupling between granule cells of rat dentate gyrus: physiological and anatomical evidence. J Neurophysiol 47:579-92 [Journal]

Maex R, De Schutter E (2003) Resonant Synchronization in Heterogeneous Networks of Inhibitory Neurons. J Neurosci 23:10503-10514 [Journal] [PubMed]

   Fast oscillations in inhibitory networks (Maex, De Schutter 2003) [Model]

Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1:181-90 [PubMed]

Margerison JH, Corsellis JA (1966) Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 89:499-530 [PubMed]

Masukawa LM, Burdette LJ, McGonigle P, Wang H, O'Connor W, Sperling MR, O'Connor MJ, Uruno K (1999) Physiological and anatomical correlates of the human dentate gyrus: consequences or causes of epilepsy. Adv Neurol 79:781-94

Mathern GW, Bertram EH, Babb TL, Pretorius JK, Kuhlman PA, Spradlin S, Mendoza D (1997) In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limbic status model correlates with greater aberrant fascia dentata excitatory and inhibitory axon sprouting, and increased staining for N-methyl-D-aspartate, AMPA and GABA(A) receptors. Neuroscience 77:1003-19 [PubMed]

Mathern GW, Pretorius JK, Babb TL (1995) Influence of the type of initial precipitating injury and at what age it occurs on course and outcome in patients with temporal lobe seizures. J Neurosurg 82:220-7

Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol 73:1157-68 [Journal] [PubMed]

   CA3 Pyramidal Neuron (Migliore et al 1995) [Model]

Miles R, Wong RK (1986) Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. J Physiol 373:397-418 [PubMed]

Miles R, Wong RK (1987) Inhibitory control of local excitatory circuits in the guinea-pig hippocampus. J Physiol 388:611-29 [PubMed]

Molnar P, Nadler JV (1999) Mossy fiber-granule cell synapses in the normal and epileptic rat dentate gyrus studied with minimal laser photostimulation. J Neurophysiol 82:1883-94 [Journal]

Molnar P, Nadler JV (2001) Synaptically-released zinc inhibits N-methyl-D-aspartate receptor activation at recurrent mossy fiber synapses. Brain Res 910:205-7

Mott DD, Turner DA, Okazaki MM, Lewis DV (1997) Interneurons of the dentate-hilus border of the rat dentate gyrus: morphological and electrophysiological heterogeneity. J Neurosci 17:3990-4005 [PubMed]

   [13 reconstructed morphologies on NeuroMorpho.Org]

Nadler JV (2003) The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res 28:1649-58 [PubMed]

Nissinen JPT, Kharatishvili I, Mcintosh TK, Pitkafinen A (2003) Epileptogenesis induced by traumatic brain injury in rats Epilepsia 44:175

Patton PE, McNaughton B (1995) Connection matrix of the hippocampal formation: I. The dentate gyrus. Hippocampus 5:245-86 [PubMed]

Rall W, Burke RE, Holmes WR, Jack JJ, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol Rev 72:S159-86 [PubMed]

Ratzliff AH, Howard AL, Santhakumar V, Osapay I, Soltesz I (2004) Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: implications for epileptogenesis. J Neurosci 24:2259-69 [PubMed]

Ratzliff AH, Santhakumar V, Howard A, Soltesz I (2002) Mossy cells in epilepsy: rigor mortis or vigor mortis? Trends Neurosci 25:140-4 [PubMed]

Ross ST, Soltesz I (2000) Selective depolarization of interneurons in the early posttraumatic dentate gyrus: involvement of the Na(+)/K(+)-ATPase. J Neurophysiol 83:2916-30 [Journal] [PubMed]

Santhakumar V, Bender R, Frotscher M, Ross ST, Hollrigel GS, Toth Z, Soltesz I (2000) Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the 'irritable mossy cell' hypothesis. J Physiol 524 Pt 1:117-34 [PubMed]

Santhakumar V, Ratzliff AD, Jeng J, Toth Z, Soltesz I (2001) Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann Neurol 50:708-17 [PubMed]

Santhakumar V, Voipio J, Kaila K, Soltesz I (2003) Post-traumatic hyperexcitability is not caused by impaired buffering of extracellular potassium. J Neurosci 23:5865-76

Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11:1660-73 [PubMed]

Scharfman HE (1993) Characteristics of spontaneous and evoked EPSPs recorded from dentate spiny hilar cells in rat hippocampal slices. J Neurophysiol 70:742-57 [Journal]

Scharfman HE (1995) Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J Neurophysiol 74:179-94 [Journal] [PubMed]

Scharfman HE, Smith KL, Goodman JH, Sollas AL (2001) Survival of dentate hilar mossy cells after pilocarpine-induced seizures and their synchronized burst discharges with area CA3 pyramidal cells. Neuroscience 104:741-59

Sik A, Penttonen M, Buzsaki G (1997) Interneurons in the hippocampal dentate gyrus: an in vivo intracellular study. Eur J Neurosci 9:573-88 [PubMed]

Sloviter RS (1991) Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the "dormant basket cell" hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1:41-66 [PubMed]

Sloviter RS (1994) The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol 35:640-54 [PubMed]

Sloviter RS, Zappone CA, Harvey BD, Bumanglag AV, Bender RA, Frotscher M (2003) "Dormant basket cell" hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. J Comp Neurol 459:44-76

Staley KJ, Otis TS, Mody I (1992) Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J Neurophysiol 67:1346-58 [Journal] [PubMed]

Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L (1989) Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 26:321-30 [PubMed]

Sutula TP, Golarai G, Cavazos J (1992) Assessing the functional significance of mossy fiber sprouting. Epilepsy Res Suppl 7:251-9

Toth Z, Hollrigel GS, Gorcs T, Soltesz I (1997) Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex. J Neurosci 17:8106-17 [PubMed]

Traub RD, Jefferys JG, Whittington MA (1994) Enhanced NMDA conductance can account for epileptiform activity induced by low Mg2+ in the rat hippocampal slice. J Physiol 478 Pt 3:379-93 [PubMed]

Traub RD, Knowles WD, Miles R, Wong RK (1987) Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice. Neuroscience 21:457-70

Walker MC, Ruiz A, Kullmann DM (2001) Monosynaptic GABAergic signaling from dentate to CA3 with a pharmacological and physiological profile typical of mossy fiber synapses. Neuron 29:703-15 [PubMed]

Wang XJ, Tegner J, Constantinidis C, Goldman-Rakic PS (2004) Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc Natl Acad Sci U S A 101:1368-73 [PubMed]

Wenzel HJ, Buckmaster PS, Anderson NL, Wenzel ME, Schwartzkroin PA (1997) Ultrastructural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus. Hippocampus 7:559-70 [PubMed]

Wenzel HJ, Woolley CS, Robbins CA, Schwartzkroin PA (2000) Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats. Hippocampus 10:244-60

White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comput Neurosci 5:5-16 [Journal] [PubMed]

Zhang N, Houser CR (1999) Ultrastructural localization of dynorphin in the dentate gyrus in human temporal lobe epilepsy: a study of reorganized mossy fiber synapses. J Comp Neurol 405:472-90

Anderson WS, Kudela P, Cho J, Bergey GK, Franaszczuk PJ (2007) Studies of stimulus parameters for seizure disruption using neural network simulations. Biol Cybern 97:173-94 [Journal] [PubMed]

   Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012) [Model]
   Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007) [Model]

Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit. Elife [Journal] [PubMed]

   Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016) [Model]

Bogaard A, Parent J, Zochowski M, Booth V (2009) Interaction of cellular and network mechanisms in spatiotemporal pattern formation in neuronal networks. J Neurosci 29:1677-87 [Journal] [PubMed]

   Small world networks of Type I and Type II Excitable Neurons (Bogaard et al. 2009) [Model]

Chambers JD, Bornstein JC, Gwynne RM, Koussoulas K, Thomas EA (2014) A detailed, conductance based computer model of intrinsic sensory neurons of the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 307:G517-G532 [Journal] [PubMed]

   Intrinsic sensory neurons of the gut (Chambers et al. 2014) [Model]

Chavlis S, Petrantonakis PC, Poirazi P (2017) Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus 27:89-110 [Journal] [PubMed]

   Dentate Gyrus model including Granule cells with dendritic compartments (Chavlis et al 2017) [Model]

Cutsuridis V, Cobb S, Graham BP (2009) Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20(3):423-46 [Journal] [PubMed]

   Encoding and retrieval in a model of the hippocampal CA1 microcircuit (Cutsuridis et al. 2009) [Model]

Cutsuridis V, Poirazi P (2015) A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop. Neurobiol Learn Mem 120:69-83 [Journal] [PubMed]

   Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015) [Model]

Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97:1566-87 [Journal] [PubMed]

   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray (2010) NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6:e1000815 [Journal] [PubMed]

Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54:219-35 [Journal] [PubMed]

Hines M, Eichner H, Schuermann F (2008) Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors J Comput Neurosci 25(1):203-210 [Journal] [PubMed]

   Cell splitting in neural networks extends strong scaling (Hines et al. 2008) [Model]

Hines ML, Markram H, Schuermann F (2008) Fully Implicit Parallel Simulation of Single Neurons J Comp Neurosci 25:439-448 [Journal] [PubMed]

   Fully Implicit Parallel Simulation of Single Neurons (Hines et al. 2008) [Model]

Howard AL, Neu A, Morgan RJ, Echegoyen JC, Soltesz I (2007) Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol 97:2394-409 [Journal] [PubMed]

Jedlicka P, Deller T, Gutkin BS, Backus KH (2011) Activity-dependent intracellular chloride accumulation and diffusion controls GABA(A) receptor-mediated synaptic transmission. Hippocampus 21:885-98 [Journal] [PubMed]

   Effects of Chloride accumulation and diffusion on GABAergic transmission (Jedlicka et al 2011) [Model]

Jedlicka P, Hoon M, Papadopoulos T, Vlachos A, Winkels R, Poulopoulos A, Betz H, Deller T, Br (2010) Increased Dentate Gyrus Excitability in Neuroligin-2-Deficient Mice in Vivo. Cereb Cortex [Journal] [PubMed]

Marasco A, Limongiello A, Migliore M (2012) Fast and accurate low-dimensional reduction of biophysically detailed neuron models Scientific Reports 2:928:1-7 [Journal] [PubMed]

   Ca1 pyramidal neuron: reduction model (Marasco et al. 2012) [Model]

Migliore M, Cannia C, Lytton WW, Markram H, Hines ML (2006) Parallel Network Simulations with NEURON. J Comp Neurosci 21:110-119 [Journal] [PubMed]

   Parallel network simulations with NEURON (Migliore et al 2006) [Model]

Morgan RJ, Santhakumar V, Soltesz I (2007) Modeling the dentate gyrus. Prog Brain Res 163:639-58 [Journal] [PubMed]

   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105:6179-84 [Journal] [PubMed]

   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Proddutur A, Yu J, Elgammal FS, Santhakumar V (2013) Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations. Chaos 23:046109 [Journal] [PubMed]

   Basket cell extrasynaptic inhibition modulates network oscillations (Proddutur et al., 2013) [Model]

Tejada J, Arisi GM, Garci­a-Cairasco N, Roque AC (2012) Morphological alterations in newly born dentate gyrus granule cells that emerge after status epilepticus contribute to make them less excitable. PLoS One 7:e40726-78 [Journal] [PubMed]

   Dentate gyrus network model (Tejada et al 2014) [Model]

Tejada J, Garcia-Cairasco N, Roque AC (2014) Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus. PLoS Comput Biol 10:e1003601 [Journal] [PubMed]

   Dentate gyrus network model (Tejada et al 2014) [Model]

Thomas EA, Petrou S (2013) Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin. Epilepsia 54(7):1195-202 [Journal] [PubMed]

   State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013) [Model]

Thomas EA, Reid CA, Berkovic SF, Petrou S (2009) Prediction by Modeling That Epilepsy May Be Caused by Very Small Functional Changes in Ion Channels Arch Neurol. 66(10):1225-1232 [Journal] [PubMed]

   Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009) [Model]

Thomas EA, Reid CA, Petrou S (2009) Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability. Epilepsia [Journal] [PubMed]

   Na channel mutations in the dentate gyrus (Thomas et al. 2009) [Model]

Yim MY, Hanuschkin A, Wolfart J (2015) Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus 25:297-308 [Journal] [PubMed]

   Dentate gyrus network model pattern separation and granule cell scaling in epilepsy (Yim et al 2015) [Model]

Yu J, Proddutur A, Elgammal FS, Ito T, Santhakumar V (2013) Status epilepticus enhances tonic GABA currents and depolarizes GABA reversal potential in dentate fast-spiking basket cells. J Neurophysiol 109:1746-63 [Journal] [PubMed]

   [4 reconstructed morphologies on NeuroMorpho.Org]
   Status epilepticus alters dentate basket cell tonic inhibition (Yu J et al 2013) [Model]

(123 refs)

Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97:1566-87[PubMed]

References and models cited by this paper

References and models that cite this paper

Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63-72 [PubMed]

Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18:3386-403 [PubMed]

Acsady L, Katona I, Martinez-Guijarro FJ, Buzsaki G, Freund TF (2000) Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. J Neurosci 20:6907-19 [PubMed]

Andre V, Marescaux C, Nehlig A, Fritschy JM (2001) Alterations of hippocampal GAbaergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy. Hippocampus 11:452-68 [PubMed]

Aradi I, Holmes WR (1999) Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci 6:215-35 [Journal] [PubMed]

   Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999) [Model]

Ascoli GA, Atkeson JC (2006) Incorporating anatomically realistic cellular-level connectivity in neural network models of the rat hippocampus. Biosystems 79:173-81 [PubMed]

Babb TL, Pretorius JK, Kupfer WR, Brown WJ (1988) Distribution of glutamate-decarboxylase-immunoreactive neurons and synapses in the rat and monkey hippocampus: light and electron microscopy. J Comp Neurol 278:121-38 [PubMed]

Barabasi AL, Albert R, Jeong H (2000) Scale-free characteristics of random networks: the topology of the world-wide web Physica A 281:69-77

Barahona M, Pecora LM (2002) Synchronization in small-world systems. Phys Rev Lett 89:054101 [PubMed]

Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci 21:2687-98 [PubMed]

   Dentate Basket Cell: spatial summation of inhibitory synaptic inputs (Bartos et al 2001) [Model]

Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JR, Jonas P (2002) Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci U S A 99:13222-7 [Journal] [PubMed]

   Gamma oscillations in hippocampal interneuron networks (Bartos et al 2002) [Model]

Bernard C, Cannon RC, Ben Ari Y, Wheal HV (1997) Model of spatio-temporal propagation of action potentials in the Schaffer collateral pathway of the CA1 area of the rat hippocampus. Hippocampus 7:58-72 [PubMed]

Blackstad TW, Brink K, Hem J, Jeune B (1970) Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. J Comp Neurol 138:433-49 [PubMed]

Blasco-Ibanez JM, Martinez-Guijarro FJ, Freund TF (2000) Recurrent mossy fibers preferentially innervate parvalbumin-immunoreactive interneurons in the granule cell layer of the rat dentate gyrus. Neuroreport 11:3219-25 [PubMed]

Blumcke I, Suter B, Behle K, Kuhn R, Schramm J, Elger CE, Wiestler OD (2000) Loss of hilar mossy cells in Ammon's horn sclerosis. Epilepsia 41 Suppl 6:S174-80 [PubMed]

Boss BD, Peterson GM, Cowan WM (1985) On the number of neurons in the dentate gyrus of the rat. Brain Res 338:144-50 [PubMed]

Buckmaster PS, Dudek FE (1997) Network properties of the dentate gyrus in epileptic rats with hilar neuron loss and granule cell axon reorganization. J Neurophysiol 77:2685-96 [Journal] [PubMed]

Buckmaster PS, Dudek FE (1999) In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. J Neurophysiol 81:712-21 [Journal] [PubMed]

Buckmaster PS, Jongen-Relo AL (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J Neurosci 19:9519-29 [PubMed]

Buckmaster PS, Schwartzkroin PA (1994) Hippocampal mossy cell function: a speculative view. Hippocampus 4:393-402 [PubMed]

Buckmaster PS, Strowbridge BW, Kunkel DD, Schmiege DL, Schwartzkroin PA (1992) Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice. Hippocampus 2:349-62 [PubMed]

Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366:271-92

Buckmaster PS, Yamawaki R, Zhang GF (2002) Axon arbors and synaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo. J Comp Neurol 445:360-73 [PubMed]

Buckmaster PS, Zhang GF, Yamawaki R (2002) Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci 22:6650-8 [PubMed]

Buzsaki G, Geisler C, Henze DA, Wang XJ (2004) Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci 27:186-93 [PubMed]

Cavazos JE, Das I, Sutula TP (1994) Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures. J Neurosci 14:3106-21 [PubMed]

Cavazos JE, Sutula TP (1990) Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 527:1-6 [PubMed]

Ceranik K, Bender R, Geiger JR, Monyer H, Jonas P, Frotscher M, Lubke J (1997) A novel type of GABAergic interneuron connecting the input and the output regions of the hippocampus. J Neurosci 17:5380-94 [PubMed]

Claiborne BJ, Amaral DG, Cowan WM (1990) Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus. J Comp Neurol 302:206-19 [PubMed]

Deller T (1998) The anatomical organization of the rat fascia dentata: new aspects of laminar organization as revealed by anterograde tracing with Phaseolus vulgaris-Luecoagglutinin (PHAL). Anat Embryol (Berl) 197:89-103 [PubMed]

Deller T, Frotscher M, Nitsch R (1995) Morphological evidence for the sprouting of inhibitory commissural fibers in response to the lesion of the excitatory entorhinal input to the rat dentate gyrus. J Neurosci 15:6868-78 [PubMed]

Deller T, Nitsch R, Frotscher M (1994) Associational and commissural afferents of parvalbumin-immunoreactive neurons in the rat hippocampus: a combined immunocytochemical and PHA-L study. J Comp Neurol 350:612-22 [PubMed]

Deller T, Nitsch R, Frotscher M (1995) Phaseolus vulgaris-leucoagglutinin tracing of commissural fibers to the rat dentate gyrus: evidence for a previously unknown commissural projection to the outer molecular layer. J Comp Neurol 352:55-68 [PubMed]

Esclapez M, Houser CR (1999) Up-regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy. J Comp Neurol 412:488-505 [PubMed]

Eubank S, Guclu H, Kumar VS, Marathe MV, Srinivasan A, Toroczkai Z, Wang N (2004) Modelling disease outbreaks in realistic urban social networks. Nature 429:180-4 [PubMed]

Foldy C, Aradi I, Howard A, Soltesz I (2004) Diversity beyond variance: modulation of firing rates and network coherence by GABAergic subpopulations. Eur J Neurosci 19:119-30 [Journal] [PubMed]

Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347-470 [PubMed]

Fricke R, Cowan WM (1978) An autoradiographic study of the commissural and ipsilateral hippocampo-dentate projections in the adult rat. J Comp Neurol 181:253-69 [PubMed]

Frotscher M, Seress L, Schwerdtfeger WK, Buhl E (1991) The mossy cells of the fascia dentata: a comparative study of their fine structure and synaptic connections in rodents and primates. J Comp Neurol 312:145-63 [PubMed]

Gaarskjaer FB (1978) Organization of the mossy fiber system of the rat studied in extended hippocampi. I. Terminal area related to number of granule and pyramidal cells. J Comp Neurol 178:49-72 [PubMed]

Gabriel S, Njunting M, Pomper JK, Merschhemke M, Sanabria ER, Eilers A, Kivi A, Zeller M, Mee (2004) Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. J Neurosci 24:10416-30 [PubMed]

Geiger JR, Lubke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18:1009-23 [PubMed]

   Fast AMPA receptor signaling (Geiger et al 1997) [Model]

Gorter JA, van Vliet EA, Aronica E, Lopes da Silva FH (2001) Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons. Eur J Neurosci 13:657-69 [PubMed]

Gulyas AI, Hajos N, Freund TF (1996) Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci 16:3397-411 [PubMed]

Gulyas AI, Miettinen R, Jacobowitz DM, Freund TF (1992) Calretinin is present in non-pyramidal cells of the rat hippocampus--I. A new type of neuron specifically associated with the mossy fibre system. Neuroscience 48:1-27 [PubMed]

Halasy K, Somogyi P (1993) Subdivisions in the multiple GABAergic innervation of granule cells in the dentate gyrus of the rat hippocampus. Eur J Neurosci 5:411-29 [PubMed]

Han ZS, Buhl EH, Lorinczi Z, Somogyi P (1993) A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur J Neurosci 5:395-410 [PubMed]

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]

Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651-4 [PubMed]

Katona I, Acsady L, Freund TF (1999) Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience 88:37-55 [PubMed]

Lago-Fernandez LF, Huerta R, Corbacho F, Siguenza JA (2000) Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84:2758-61 [PubMed]

Leite JP, Babb TL, Pretorius JK, Kuhlman PA, Yeoman KM, Mathern GW (1996) Neuron loss, mossy fiber sprouting, and interictal spikes after intrahippocampal kainate in developing rats. Epilepsy Res 26:219-31 [PubMed]

Li C, Chen G (2003) Stability of a neural network model with small-world connections. Phys Rev E Stat Nonlin Soft Matter Phys 68:052901-31 [PubMed]

Li XG, Somogyi P, Tepper JM, Buzsaki G (1992) Axonal and dendritic arborization of an intracellularly labeled chandelier cell in the CA1 region of rat hippocampus. Exp Brain Res 90:519-25 [PubMed]

Lin M, Chen T (2005) Self-organized criticality in a simple model of neurons based on small-world networks. Phys Rev E Stat Nonlin Soft Matter Phys 71:016133-31 [PubMed]

Longo B, Covolan L, Chadi G, Mello LE (2003) Sprouting of mossy fibers and the vacating of postsynaptic targets in the inner molecular layer of the dentate gyrus. Exp Neurol 181:57-67 [PubMed]

Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK (1992) Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci 12:4846-53 [PubMed]

Lubke J, Frotscher M, Spruston N (1998) Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. J Neurophysiol 79:1518-34 [Journal] [PubMed]

Margerison JH, Corsellis JA (1966) Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 89:499-530 [PubMed]

Masuda N, Aihara K (2004) Global and local synchrony of coupled neurons in small-world networks. Biol Cybern 90:302-9 [PubMed]

Mathern GW, Babb TL, Leite JP, Pretorius K, Yeoman KM, Kuhlman PA (1996) The pathogenic and progressive features of chronic human hippocampal epilepsy. Epilepsy Res 26:151-61 [PubMed]

Mathern GW, Bertram EH, Babb TL, Pretorius JK, Kuhlman PA, Spradlin S, Mendoza D (1997) In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limbic status model correlates with greater aberrant fascia dentata excitatory and inhibitory axon sprouting, and increased staining for N-methyl-D-aspartate, AMPA and GABA(A) receptors. Neuroscience 77:1003-19 [PubMed]

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824-7 [PubMed]

Nadler JV (2003) The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res 28:1649-58 [PubMed]

Netoff TI, Clewley R, Arno S, Keck T, White JA (2004) Epilepsy in small-world networks. J Neurosci 24:8075-83 [PubMed]

Nomura T, Fukuda T, Aika Y, Heizmann CW, Emson PC, Kobayashi T, Kosaka T (1997) Distribution of nonprincipal neurons in the rat hippocampus, with special reference to their dorsoventral difference. Brain Res 751:64-80 [PubMed]

Nomura T, Fukuda T, Aika Y, Heizmann CW, Emson PC, Kobayashi T, Kosaka T (1997) Laminar distribution of non-principal neurons in the rat hippocampus, with special reference to their compositional difference among layers. Brain Res 764:197-204 [PubMed]

Patton PE, McNaughton B (1995) Connection matrix of the hippocampal formation: I. The dentate gyrus. Hippocampus 5:245-86 [PubMed]

Percha B, Dzakpasu R, Zochowski M, Parent J (2005) Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys Rev E Stat Nonlin Soft Matter Phys 72:031909-204 [PubMed]

Rafiq A, Zhang YF, DeLorenzo RJ, Coulter DA (1995) Long-duration self-sustained epileptiform activity in the hippocampal-parahippocampal slice: a model of status epilepticus. J Neurophysiol 74:2028-42 [Journal] [PubMed]

Ratzliff AH, Howard AL, Santhakumar V, Osapay I, Soltesz I (2004) Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: implications for epileptogenesis. J Neurosci 24:2259-69 [PubMed]

Ratzliff AH, Santhakumar V, Howard A, Soltesz I (2002) Mossy cells in epilepsy: rigor mortis or vigor mortis? Trends Neurosci 25:140-4 [PubMed]

Reigl M, Alon U, Chklovskii DB (2004) Search for computational modules in the C. elegans brain. BMC Biol 2:25

Ribak CE, Seress L, Amaral DG (1985) The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. J Neurocytol 14:835-57 [PubMed]

Roxin A, Riecke H, Solla SA (2004) Self-sustained activity in a small-world network of excitable neurons. Phys Rev Lett 92:198101-204 [PubMed]

Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53 [Journal] [PubMed]

   Dentate gyrus network model (Santhakumar et al 2005) [Model]
   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Santhakumar V, Ratzliff AD, Jeng J, Toth Z, Soltesz I (2001) Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann Neurol 50:708-17 [PubMed]

Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11:1660-73 [PubMed]

Seress L, Ribak CE (1984) Direct commissural connections to the basket cells of the hippocampal dentate gyrus: anatomical evidence for feed-forward inhibition. J Neurocytol 13:215-25 [PubMed]

Shefi O, Golding I, Segev R, Ben-Jacob E, Ayali A (2002) Morphological characterization of in vitro neuronal networks. Phys Rev E Stat Nonlin Soft Matter Phys 66:021905-73 [PubMed]

Sik A, Penttonen M, Buzsaki G (1997) Interneurons in the hippocampal dentate gyrus: an in vivo intracellular study. Eur J Neurosci 9:573-88 [PubMed]

Sik A, Ylinen A, Penttonen M, Buzsaki G (1994) Inhibitory CA1-CA3-hilar region feedback in the hippocampus. Science 265:1722-4 [PubMed]

Soltesz I (2006) Diversity in the Neuronal Machine-Order and Variability in Interneuronal Microcircuits.

Song S, Sjostrom PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3:e68-88 [PubMed]

Soriano E, Nitsch R, Frotscher M (1990) Axo-axonic chandelier cells in the rat fascia dentata: Golgi-electron microscopy and immunocytochemical studies. J Comp Neurol 293:1-25 [PubMed]

Sporns O, Kotter R (2004) Motifs in brain networks. PLoS Biol 2:e369-25 [PubMed]

Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145-62 [PubMed]

Staley KJ, Otis TS, Mody I (1992) Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J Neurophysiol 67:1346-58 [Journal] [PubMed]

Stephan KE, Hilgetag CC, Burns GA, O'Neill MA, Young MP, Kotter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci 355:111-26 [PubMed]

Sutula TP, Hagen J, Pitkanen A (2003) Do epileptic seizures damage the brain? Curr Opin Neurol 16:189-95 [PubMed]

Toth Z, Hollrigel GS, Gorcs T, Soltesz I (1997) Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex. J Neurosci 17:8106-17 [PubMed]

Traub RD, Contreras D, Cunningham MO, Murray H, Lebeau FE, Roopun A, Bibbig A, et al (2005) A single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts J Neurophysiol 93(4):2194-232 [Journal] [PubMed]

   A single column thalamocortical network model (Traub et al 2005) [Model]
   Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017) [Model]

Traub RD, Pais I, Bibbig A, Lebeau FE, Buhl EH, Garner H, Monyer H, Whittington MA (2005) Transient depression of excitatory synapses on interneurons contributes to epileptiform bursts during gamma oscillations in the mouse hippocampal slice. J Neurophysiol 94:1225-35 [Journal] [PubMed]

van Vliet EA, Aronica E, Tolner EA, Lopes da Silva FH, Gorter JA (2004) Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation. Exp Neurol 187:367-79 [PubMed]

Watts DJ, Strogatz SH (1998) Collective dynamics of 'small-world' networks. Nature 393:440-2 [PubMed]

Wenzel HJ, Buckmaster PS, Anderson NL, Wenzel ME, Schwartzkroin PA (1997) Ultrastructural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus. Hippocampus 7:559-70 [PubMed]

West MJ (1990) Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men. Prog Brain Res 83:13-36 [PubMed]

West MJ, Danscher G, Gydesen H (1978) A determination of the volumes of the layers of the rat hippocampal region. Cell Tissue Res 188:345-59 [PubMed]

White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comput Neurosci 5:5-16 [Journal] [PubMed]

Woodson W, Nitecka L, Ben-Ari Y (1989) Organization of the GABAergic system in the rat hippocampal formation: a quantitative immunocytochemical study. J Comp Neurol 280:254-71 [PubMed]

Yoshimura Y, Callaway EM (2005) Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat Neurosci 8:1552-9 [PubMed]

Yoshimura Y, Dantzker JL, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433:868-73 [PubMed]

Zappone CA, Sloviter RS (2001) Commissurally projecting inhibitory interneurons of the rat hippocampal dentate gyrus: a colocalization study of neuronal markers and the retrograde tracer Fluoro-gold. J Comp Neurol 441:324-44

Zappone CA, Sloviter RS (2004) Translamellar disinhibition in the rat hippocampal dentate gyrus after seizure-induced degeneration of vulnerable hilar neurons. J Neurosci 24:853-64

Alturki A, Feng F, Nair A, Guntu V, Nair SS (2016) Distinct current modules shape cellular dynamics in model neurons. Neuroscience 334:309-331 [Journal] [PubMed]

   Distinct current modules shape cellular dynamics in model neurons (Alturki et al 2016) [Model]

Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit. Elife [Journal] [PubMed]

   Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016) [Model]

Bogaard A, Parent J, Zochowski M, Booth V (2009) Interaction of cellular and network mechanisms in spatiotemporal pattern formation in neuronal networks. J Neurosci 29:1677-87 [Journal] [PubMed]

   Small world networks of Type I and Type II Excitable Neurons (Bogaard et al. 2009) [Model]

Carnevale NT, Morse TM (1996-2009) Research reports that have used NEURON Web published citations at the NEURON website [Journal]

Howard AL, Neu A, Morgan RJ, Echegoyen JC, Soltesz I (2007) Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol 97:2394-409 [Journal] [PubMed]

Kim D, Pare D, Nair SS (2013) Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn Mem 20:421-30 [Journal] [PubMed]

   A 1000 cell network model for Lateral Amygdala (Kim et al. 2013) [Model]

Kitano K, Fukai T (2007) Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies. J Comput Neurosci 23:237-50 [Journal] [PubMed]

Morgan RJ, Santhakumar V, Soltesz I (2007) Modeling the dentate gyrus. Prog Brain Res 163:639-58 [Journal] [PubMed]

   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105:6179-84 [Journal] [PubMed]

   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW (2013) Reinforcement learning of 2-joint virtual arm reaching in a computer model of sensorimotor cortex Neural Computation 25(12):3263-93 [Journal] [PubMed]

   Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013) [Model]

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19-75 [Journal] [PubMed]

   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]

Proddutur A, Yu J, Elgammal FS, Santhakumar V (2013) Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations. Chaos 23:046109 [Journal] [PubMed]

   Basket cell extrasynaptic inhibition modulates network oscillations (Proddutur et al., 2013) [Model]

Stacey WC, Krieger A, Litt B (2011) Network recruitment to coherent oscillations in a hippocampal computer model. J Neurophysiol 105(4):1464-1481 [Journal] [PubMed]

   Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011) [Model]

Stacey WC, Lazarewicz MT, Litt B (2009) Synaptic noise and physiological coupling generate high-frequency oscillations in a hippocampal computational model. J Neurophysiol 102:2342-57 [Journal] [PubMed]

   High frequency oscillations in a hippocampal computational model (Stacey et al. 2009) [Model]

Tejada J, Garcia-Cairasco N, Roque AC (2014) Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus. PLoS Comput Biol 10:e1003601 [Journal] [PubMed]

   Dentate gyrus network model (Tejada et al 2014) [Model]

Thomas EA, Petrou S (2013) Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin. Epilepsia 54(7):1195-202 [Journal] [PubMed]

   State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013) [Model]

Thomas EA, Reid CA, Berkovic SF, Petrou S (2009) Prediction by Modeling That Epilepsy May Be Caused by Very Small Functional Changes in Ion Channels Arch Neurol. 66(10):1225-1232 [Journal] [PubMed]

   Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009) [Model]

Thomas EA, Reid CA, Petrou S (2009) Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability. Epilepsia [Journal] [PubMed]

   Na channel mutations in the dentate gyrus (Thomas et al. 2009) [Model]

Yim MY, Hanuschkin A, Wolfart J (2015) Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus 25:297-308 [Journal] [PubMed]

   Dentate gyrus network model pattern separation and granule cell scaling in epilepsy (Yim et al 2015) [Model]

Yu J, Proddutur A, Elgammal FS, Ito T, Santhakumar V (2013) Status epilepticus enhances tonic GABA currents and depolarizes GABA reversal potential in dentate fast-spiking basket cells. J Neurophysiol 109:1746-63 [Journal] [PubMed]

   [4 reconstructed morphologies on NeuroMorpho.Org]
   Status epilepticus alters dentate basket cell tonic inhibition (Yu J et al 2013) [Model]

(124 refs)

Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105:6179-84[PubMed]

References and models cited by this paper

References and models that cite this paper

Albert A, Jeong H, Barabasi AL (1999) Internet: Diameter of the World-Wide Web Nature 401:130-131

Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118:4947-57 [PubMed]

Albert R, Barabasi A (2002) Statistical mechanics of complex networks Rev Mod Phys 74:47-97

Barabasi AL, Albert R (1999) Emergence of scaling in random networks Science 286:509-12 [PubMed]

Barabasi AL, Albert R, Jeong H (2000) Scale-free characteristics of random networks: the topology of the world-wide web Physica A 281:69-77

Buckmaster PS, Dudek FE (1999) In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. J Neurophysiol 81:712-21 [Journal] [PubMed]

Buckmaster PS, Jongen-Relo AL (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J Neurosci 19:9519-29 [PubMed]

Buckmaster PS, Thind K (2005) Quantifying routes of positive-feedback among granule cells in a model of temporal lobe epilepsy Epilepsia 46:91-131

Buckmaster PS, Zhang GF, Yamawaki R (2002) Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci 22:6650-8 [PubMed]

Desmond NL, Levy WB (1982) A quantitative anatomical study of the granule cell dendritic fields of the rat dentate gyrus using a novel probabilistic method. J Comp Neurol 212:131-45 [PubMed]

Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97:1566-87 [Journal] [PubMed]

   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Eubank S, Guclu H, Kumar VS, Marathe MV, Srinivasan A, Toroczkai Z, Wang N (2004) Modelling disease outbreaks in realistic urban social networks. Nature 429:180-4 [PubMed]

Eytan D, Marom S (2006) Dynamics and effective topology underlying synchronization in networks of cortical neurons. J Neurosci 26:8465-76 [PubMed]

Felleman DJ, Van Essen DC (2004) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1-47 [PubMed]

Hilgetag CC, Burns GA, O'Neill MA, Scannell JW, Young MP (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans R Soc Lond B Biol Sci 355:91-110

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]

Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651-4 [PubMed]

Klemm K, Bornholdt S (2005) Topology of biological networks and reliability of information processing. Proc Natl Acad Sci U S A 102:18414-9 [PubMed]

Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science 303:1538-42 [PubMed]

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824-7 [PubMed]

Prill RJ, Iglesias PA, Levchenko A (2005) Dynamic properties of network motifs contribute to biological network organization. PLoS Biol 3:e343 [PubMed]

Reigl M, Alon U, Chklovskii DB (2004) Search for computational modules in the C. elegans brain. BMC Biol 2:25

Ribak CE, Tran PH, Spigelman I, Okazaki MM, Nadler JV (2000) Status epilepticus-induced hilar basal dendrites on rodent granule cells contribute to recurrent excitatory circuitry. J Comp Neurol 428:240-53 [PubMed]

Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53 [Journal] [PubMed]

   Dentate gyrus network model (Santhakumar et al 2005) [Model]
   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Song S, Sjostrom PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3:e68-88 [PubMed]

Spigelman I, Yan XX, Obenaus A, Lee EY, Wasterlain CG, Ribak CE (1998) Dentate granule cells form novel basal dendrites in a rat model of temporal lobe epilepsy. Neuroscience 86:109-20 [PubMed]

Sporns O, Kotter R (2004) Motifs in brain networks. PLoS Biol 2:e369-25 [PubMed]

Stephan KE, Hilgetag CC, Burns GA, O'Neill MA, Young MP, Kotter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci 355:111-26 [PubMed]

Tanaka R (2005) Scale-rich metabolic networks. Phys Rev Lett 94:168101-57 [PubMed]

Toroczkai Z, Bassler KE (2004) Network dynamics: jamming is limited in scale-free systems. Nature 428:716-9 [PubMed]

Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc Biol Sci 268:1803-10 [PubMed]

Walter C, Murphy BL, Pun RY, Spieles-Engemann AL, Danzer SC (2007) Pilocarpine-induced seizures cause selective time-dependent changes to adult-generated hippocampal dentate granule cells. J Neurosci 27:7541-52 [PubMed]

   [11 reconstructed morphologies on NeuroMorpho.Org]

Watts DJ (1999) Small Worlds: The Dynamics of Networks Between Order and Randomness

Watts DJ, Strogatz SH (1998) Collective dynamics of 'small-world' networks. Nature 393:440-2 [PubMed]

Wernicke S, Rasche F (2006) FANMOD: a tool for fast network motif detection. Bioinformatics 22:1152-3 [PubMed]

White JG, Southgate E, Thomson JN, Brenner S (1986) The structureof the nervous system of the nematode Caenorhabditis elegans Philos Trans R Soc Lond B Biol Soc 314:1-340

Yoshimura Y, Callaway EM (2005) Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat Neurosci 8:1552-9 [PubMed]

Yoshimura Y, Dantzker JL, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433:868-73 [PubMed]

Young MP (1993) The organization of neural systems in the primate cerebral cortex. Proc Biol Sci 252:13-8 [PubMed]

Zhigulin VP (2004) Dynamical motifs: building blocks of complex dynamics in sparsely connected random networks. Phys Rev Lett 92:238701-83 [PubMed]

Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit. Elife [Journal] [PubMed]

   Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016) [Model]

Bogaard A, Parent J, Zochowski M, Booth V (2009) Interaction of cellular and network mechanisms in spatiotemporal pattern formation in neuronal networks. J Neurosci 29:1677-87 [Journal] [PubMed]

   Small world networks of Type I and Type II Excitable Neurons (Bogaard et al. 2009) [Model]

Chadderdon GL, Mohan A, Suter BA, Neymotin SA, Kerr CC, Francis JT, Shepherd GM, Lytton WW (2014) Motor cortex microcircuit simulation based on brain activity mapping. Neural Comput 26:1239-62 [Journal] [PubMed]

   Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014) [Model]

Marasco A, Limongiello A, Migliore M (2012) Fast and accurate low-dimensional reduction of biophysically detailed neuron models Scientific Reports 2:928:1-7 [Journal] [PubMed]

   Ca1 pyramidal neuron: reduction model (Marasco et al. 2012) [Model]

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19-75 [Journal] [PubMed]

   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]

Parasuram H, Nair B, D`Angelo E, Hines M, Naldi G, Diwakar S (2016) Computational modeling of single neuron extracellular electric potentials and network Local Field Potentials using LFPsim Front. Comput. Neurosci. 10:65 [Journal]

   Modeling single neuron LFPs and extracellular potentials with LFPsim (Parasuram et al. 2016) [Model]

Proddutur A, Yu J, Elgammal FS, Santhakumar V (2013) Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations. Chaos 23:046109 [Journal] [PubMed]

   Basket cell extrasynaptic inhibition modulates network oscillations (Proddutur et al., 2013) [Model]

Stacey WC, Krieger A, Litt B (2011) Network recruitment to coherent oscillations in a hippocampal computer model. J Neurophysiol 105(4):1464-1481 [Journal] [PubMed]

   Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011) [Model]

Tejada J, Arisi GM, Garci­a-Cairasco N, Roque AC (2012) Morphological alterations in newly born dentate gyrus granule cells that emerge after status epilepticus contribute to make them less excitable. PLoS One 7:e40726-78 [Journal] [PubMed]

   Dentate gyrus network model (Tejada et al 2014) [Model]

Tejada J, Garcia-Cairasco N, Roque AC (2014) Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus. PLoS Comput Biol 10:e1003601 [Journal] [PubMed]

   Dentate gyrus network model (Tejada et al 2014) [Model]

Thomas EA, Petrou S (2013) Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin. Epilepsia 54(7):1195-202 [Journal] [PubMed]

   State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013) [Model]

Thomas EA, Reid CA, Berkovic SF, Petrou S (2009) Prediction by Modeling That Epilepsy May Be Caused by Very Small Functional Changes in Ion Channels Arch Neurol. 66(10):1225-1232 [Journal] [PubMed]

   Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009) [Model]

Thomas EA, Reid CA, Petrou S (2009) Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability. Epilepsia [Journal] [PubMed]

   Na channel mutations in the dentate gyrus (Thomas et al. 2009) [Model]

Yim MY, Hanuschkin A, Wolfart J (2015) Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus 25:297-308 [Journal] [PubMed]

   Dentate gyrus network model pattern separation and granule cell scaling in epilepsy (Yim et al 2015) [Model]

Yu J, Proddutur A, Elgammal FS, Ito T, Santhakumar V (2013) Status epilepticus enhances tonic GABA currents and depolarizes GABA reversal potential in dentate fast-spiking basket cells. J Neurophysiol 109:1746-63 [Journal] [PubMed]

   [4 reconstructed morphologies on NeuroMorpho.Org]
   Status epilepticus alters dentate basket cell tonic inhibition (Yu J et al 2013) [Model]

(55 refs)

Morgan RJ, Santhakumar V, Soltesz I (2007) Modeling the dentate gyrus. Prog Brain Res 163:639-58[PubMed]

References and models cited by this paper

References and models that cite this paper

Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18:3386-403 [PubMed]

Acsady L, Katona I, Martinez-Guijarro FJ, Buzsaki G, Freund TF (2000) Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. J Neurosci 20:6907-19 [PubMed]

Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182:851-914 [PubMed]

Aradi I, Holmes WR (1999) Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci 6:215-35 [Journal] [PubMed]

   Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999) [Model]

Aradi I, Holmes WR (1999) Active dendrites regulate spatio-temporal synaptic integration in hippocampal dentate granule cells Neurocomputing 26:45-51

Babb TL, Pretorius JK, Kupfer WR, Brown WJ (1988) Distribution of glutamate-decarboxylase-immunoreactive neurons and synapses in the rat and monkey hippocampus: light and electron microscopy. J Comp Neurol 278:121-38 [PubMed]

Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci 21:2687-98 [PubMed]

   Dentate Basket Cell: spatial summation of inhibitory synaptic inputs (Bartos et al 2001) [Model]

Blasco-Ibanez JM, Martinez-Guijarro FJ, Freund TF (2000) Recurrent mossy fibers preferentially innervate parvalbumin-immunoreactive interneurons in the granule cell layer of the rat dentate gyrus. Neuroreport 11:3219-25 [PubMed]

Blumcke I, Suter B, Behle K, Kuhn R, Schramm J, Elger CE, Wiestler OD (2000) Loss of hilar mossy cells in Ammon's horn sclerosis. Epilepsia 41 Suppl 6:S174-80 [PubMed]

Boss BD, Peterson GM, Cowan WM (1985) On the number of neurons in the dentate gyrus of the rat. Brain Res 338:144-50 [PubMed]

Buckmaster PS, Dudek FE (1997) Network properties of the dentate gyrus in epileptic rats with hilar neuron loss and granule cell axon reorganization. J Neurophysiol 77:2685-96 [Journal] [PubMed]

Buckmaster PS, Dudek FE (1999) In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. J Neurophysiol 81:712-21 [Journal] [PubMed]

Buckmaster PS, Jongen-Relo AL (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J Neurosci 19:9519-29 [PubMed]

Buckmaster PS, Schwartzkroin PA (1994) Hippocampal mossy cell function: a speculative view. Hippocampus 4:393-402 [PubMed]

Buckmaster PS, Strowbridge BW, Kunkel DD, Schmiege DL, Schwartzkroin PA (1992) Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice. Hippocampus 2:349-62 [PubMed]

Buckmaster PS, Strowbridge BW, Schwartzkroin PA (1993) A comparison of rat hippocampal mossy cells and CA3c pyramidal cells. J Neurophysiol 70:1281-99 [Journal]

Buckmaster PS, Thind K (2005) Quantifying routes of positive-feedback among granule cells in a model of temporal lobe epilepsy Epilepsia 46:91-131

Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366:271-92

Buckmaster PS, Yamawaki R, Zhang GF (2002) Axon arbors and synaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo. J Comp Neurol 445:360-73 [PubMed]

Buckmaster PS, Zhang GF, Yamawaki R (2002) Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci 22:6650-8 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Cavazos JE, Das I, Sutula TP (1994) Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures. J Neurosci 14:3106-21 [PubMed]

Cavazos JE, Sutula TP (1990) Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 527:1-6 [PubMed]

Ceranik K, Bender R, Geiger JR, Monyer H, Jonas P, Frotscher M, Lubke J (1997) A novel type of GABAergic interneuron connecting the input and the output regions of the hippocampus. J Neurosci 17:5380-94 [PubMed]

Claiborne BJ, Amaral DG, Cowan WM (1990) Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus. J Comp Neurol 302:206-19 [PubMed]

Cossart R, Dinocourt C, Hirsch JC, Merchan-Perez A, De Felipe J, Ben-Ari Y, Esclapez M, Berna (2001) Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci 4:52-62 [PubMed]

Desmond NL, Levy WB (1985) Granule cell dendritic spine density in the rat hippocampus varies with spine shape and location. Neurosci Lett 54:219-24 [PubMed]

Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13-24 [PubMed]

   Fluctuating synaptic conductances recreate in-vivo-like activity (Destexhe et al 2001) [Model]

Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97:1566-87 [Journal] [PubMed]

   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347-470 [PubMed]

Frotscher M, Seress L, Schwerdtfeger WK, Buhl E (1991) The mossy cells of the fascia dentata: a comparative study of their fine structure and synaptic connections in rodents and primates. J Comp Neurol 312:145-63 [PubMed]

Gaarskjaer FB (1978) Organization of the mossy fiber system of the rat studied in extended hippocampi. I. Terminal area related to number of granule and pyramidal cells. J Comp Neurol 178:49-72 [PubMed]

Gabriel S, Njunting M, Pomper JK, Merschhemke M, Sanabria ER, Eilers A, Kivi A, Zeller M, Mee (2004) Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. J Neurosci 24:10416-30 [PubMed]

Geiger JR, Lubke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18:1009-23 [PubMed]

   Fast AMPA receptor signaling (Geiger et al 1997) [Model]

Gorter JA, van Vliet EA, Aronica E, Lopes da Silva FH (2001) Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons. Eur J Neurosci 13:657-69 [PubMed]

Gulyas AI, Hajos N, Freund TF (1996) Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci 16:3397-411 [PubMed]

Gulyas AI, Miettinen R, Jacobowitz DM, Freund TF (1992) Calretinin is present in non-pyramidal cells of the rat hippocampus--I. A new type of neuron specifically associated with the mossy fibre system. Neuroscience 48:1-27 [PubMed]

Halasy K, Somogyi P (1993) Subdivisions in the multiple GABAergic innervation of granule cells in the dentate gyrus of the rat hippocampus. Eur J Neurosci 5:411-29 [PubMed]

Han ZS, Buhl EH, Lorinczi Z, Somogyi P (1993) A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur J Neurosci 5:395-410 [PubMed]

Heinemann U, Beck H, Dreier JP, Ficker E, Stabel J, Zhang CL (1992) The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res Suppl 7:273-80 [PubMed]

Howard A, Tamas G, Soltesz I (2005) Lighting the chandelier: new vistas for axo-axonic cells. Trends Neurosci 28:310-6 [PubMed]

Howard AL, Neu A, Morgan RJ, Echegoyen JC, Soltesz I (2007) Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol 97:2394-409 [Journal] [PubMed]

Ishizuka N, Cowan WM, Amaral DG (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J Comp Neurol 362:17-45 [PubMed]

   [47 reconstructed morphologies on NeuroMorpho.Org]

Katona I, Acsady L, Freund TF (1999) Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience 88:37-55 [PubMed]

Kneisler TB, Dingledine R (1995) Synaptic input from CA3 pyramidal cells to dentate basket cells in rat hippocampus. J Physiol 487 ( Pt 1):125-46 [PubMed]

Leite JP, Babb TL, Pretorius JK, Kuhlman PA, Yeoman KM, Mathern GW (1996) Neuron loss, mossy fiber sprouting, and interictal spikes after intrahippocampal kainate in developing rats. Epilepsy Res 26:219-31 [PubMed]

Li XG, Somogyi P, Tepper JM, Buzsaki G (1992) Axonal and dendritic arborization of an intracellularly labeled chandelier cell in the CA1 region of rat hippocampus. Exp Brain Res 90:519-25 [PubMed]

Lothman EW, Stringer JL, Bertram EH (1992) The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res Suppl 7:301-13 [PubMed]

Lubke J, Frotscher M, Spruston N (1998) Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. J Neurophysiol 79:1518-34 [Journal] [PubMed]

Lytton WW, Hellman KM, Sutula TP (1998) Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artif Intell Med 13:81-97 [PubMed]

Mathern GW, Bertram EH, Babb TL, Pretorius JK, Kuhlman PA, Spradlin S, Mendoza D (1997) In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limbic status model correlates with greater aberrant fascia dentata excitatory and inhibitory axon sprouting, and increased staining for N-methyl-D-aspartate, AMPA and GABA(A) receptors. Neuroscience 77:1003-19 [PubMed]

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824-7 [PubMed]

Morgan RJ, Soltesz I (2006) American epilepsy society meeting abstract Epilepsia 47:18-28

Netoff TI, Clewley R, Arno S, Keck T, White JA (2004) Epilepsy in small-world networks. J Neurosci 24:8075-83 [PubMed]

Nomura T, Fukuda T, Aika Y, Heizmann CW, Emson PC, Kobayashi T, Kosaka T (1997) Distribution of nonprincipal neurons in the rat hippocampus, with special reference to their dorsoventral difference. Brain Res 751:64-80 [PubMed]

Nomura T, Fukuda T, Aika Y, Heizmann CW, Emson PC, Kobayashi T, Kosaka T (1997) Laminar distribution of non-principal neurons in the rat hippocampus, with special reference to their compositional difference among layers. Brain Res 764:197-204 [PubMed]

Patton PE, McNaughton B (1995) Connection matrix of the hippocampal formation: I. The dentate gyrus. Hippocampus 5:245-86 [PubMed]

Rafiq A, Zhang YF, DeLorenzo RJ, Coulter DA (1995) Long-duration self-sustained epileptiform activity in the hippocampal-parahippocampal slice: a model of status epilepticus. J Neurophysiol 74:2028-42 [Journal] [PubMed]

Rall W, Burke RE, Holmes WR, Jack JJ, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol Rev 72:S159-86 [PubMed]

Ratzliff AH, Howard AL, Santhakumar V, Osapay I, Soltesz I (2004) Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: implications for epileptogenesis. J Neurosci 24:2259-69 [PubMed]

Reigl M, Alon U, Chklovskii DB (2004) Search for computational modules in the C. elegans brain. BMC Biol 2:25

Ribak CE, Seress L, Amaral DG (1985) The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. J Neurocytol 14:835-57 [PubMed]

Roxin A, Riecke H, Solla SA (2004) Self-sustained activity in a small-world network of excitable neurons. Phys Rev Lett 92:198101-204 [PubMed]

Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53 [Journal] [PubMed]

   Dentate gyrus network model (Santhakumar et al 2005) [Model]
   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Santhakumar V, Bender R, Frotscher M, Ross ST, Hollrigel GS, Toth Z, Soltesz I (2000) Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the 'irritable mossy cell' hypothesis. J Physiol 524 Pt 1:117-34 [PubMed]

Santhakumar V, Ratzliff AD, Jeng J, Toth Z, Soltesz I (2001) Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann Neurol 50:708-17 [PubMed]

Santhakumar V, Soltesz I (2004) Plasticity of interneuronal species diversity and parameter variance in neurological diseases. Trends Neurosci 27:504-10 [PubMed]

Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11:1660-73 [PubMed]

Sik A, Penttonen M, Buzsaki G (1997) Interneurons in the hippocampal dentate gyrus: an in vivo intracellular study. Eur J Neurosci 9:573-88 [PubMed]

Song S, Sjostrom PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3:e68-88 [PubMed]

Spigelman I, Yan XX, Obenaus A, Lee EY, Wasterlain CG, Ribak CE (1998) Dentate granule cells form novel basal dendrites in a rat model of temporal lobe epilepsy. Neuroscience 86:109-20 [PubMed]

Sporns O, Kotter R (2004) Motifs in brain networks. PLoS Biol 2:e369-25 [PubMed]

van Vliet EA, Aronica E, Tolner EA, Lopes da Silva FH, Gorter JA (2004) Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation. Exp Neurol 187:367-79 [PubMed]

Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107-17 [Journal] [PubMed]

Watts DJ, Strogatz SH (1998) Collective dynamics of 'small-world' networks. Nature 393:440-2 [PubMed]

Wenzel HJ, Buckmaster PS, Anderson NL, Wenzel ME, Schwartzkroin PA (1997) Ultrastructural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus. Hippocampus 7:559-70 [PubMed]

West MJ (1990) Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men. Prog Brain Res 83:13-36 [PubMed]

Woodson W, Nitecka L, Ben-Ari Y (1989) Organization of the GABAergic system in the rat hippocampal formation: a quantitative immunocytochemical study. J Comp Neurol 280:254-71 [PubMed]

Yoshimura Y, Callaway EM (2005) Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat Neurosci 8:1552-9 [PubMed]

Yoshimura Y, Dantzker JL, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433:868-73 [PubMed]

Zappone CA, Sloviter RS (2004) Translamellar disinhibition in the rat hippocampal dentate gyrus after seizure-induced degeneration of vulnerable hilar neurons. J Neurosci 24:853-64 [PubMed]

(81 refs)