Ca2+-activated I_CAN and synaptic depression promotes network-dependent oscil. (Rubin et al. 2009)


Help downloading and running models
Accession:125649
"... the preBotzinger complex... we present and analyze a mathematical model demonstrating an unconventional mechanism of rhythm generation in which glutamatergic synapses and the short-term depression of excitatory transmission play key rhythmogenic roles. Recurrent synaptic excitation triggers postsynaptic Ca2+- activated nonspecific cation current (ICAN) to initiate a network-wide burst. Robust depolarization due to ICAN also causes voltage-dependent spike inactivation, which diminishes recurrent excitation and thus attenuates postsynaptic Ca2+ accumulation. ..."
Reference:
1 . Rubin JE, Hayes JA, Mendenhall JL, Del Negro CA (2009) Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc Natl Acad Sci U S A 106:2939-44 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): PreBotzinger complex neuron;
Channel(s): I CAN;
Gap Junctions:
Receptor(s): AMPA; mGluR;
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program (web link to model); XPP (web link to model); NeuronetExperimenter (web link to model);
Model Concept(s): Bursting; Oscillations;
Implementer(s): Rubin, Jonathan E [jonrubin at pitt.edu];
Search NeuronDB for information about:  AMPA; mGluR; I CAN;
(located via links below)

Rubin JE, Hayes JA, Mendenhall JL, Del Negro CA (2009) Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc Natl Acad Sci U S A 106:2939-44[PubMed]

References and models cited by this paper

References and models that cite this paper

Angstadt JD, Friesen WO (1991) Synchronized oscillatory activity in leech neurons induced by calcium channel blockers. J Neurophysiol 66:1858-73 [Journal] [PubMed]

Ballerini L, Bracci E, Nistri A (1997) Pharmacological block of the electrogenic sodium pump disrupts rhythmic bursting induced by strychnine and bicuculline in the neonatal rat spinal cord. J Neurophysiol 77:17-23 [PubMed]

Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8:451-65 [PubMed]

Berkowitz A (2008) Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching. J Neurophysiol 99:2887-901 [PubMed]

Bertram R, Butte MJ, Kiemel T, Sherman A (1995) Topological and phenomenological classification of bursting oscillations. Bull Math Biol 57:413-39 [PubMed]

Best J, Borisyuk A, Rubin J, Terman D, Wechselberger M (2005) The dynamic range of bursting in a model respiratory pacemaker network Siam J App Dyn Sys 4:1107-1139

Brockhaus J, Ballanyi K (1998) Synaptic inhibition in the isolated respiratory network of neonatal rats. Eur J Neurosci 10:3823-39 [PubMed]

Brody DL, Yue DT (2000) Release-independent short-term synaptic depression in cultured hippocampal neurons. J Neurosci 20:2480-94 [PubMed]

Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82:382-97 [Journal] [PubMed]

Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations Of coupled pacemaker neurons. J Neurophysiol 82:398-415 [Journal] [PubMed]

Darbon P, Tscherter A, Yvon C, Streit J (2003) Role of the electrogenic Na-K pump in disinhibition-induced bursting in cultured spinal networks. J Neurophysiol 90:3119-29 [PubMed]

Darbon P, Yvon C, Legrand JC, Streit J (2004) INaP underlies intrinsic spiking and rhythm generation in networks of cultured rat spinal cord neurons. Eur J Neurosci 20:976-88 [PubMed]

Del Negro CA, Koshiya N, Butera RJ, Smith JC (2002) Persistent sodium current, membrane properties and bursting behavior of pre-bötzinger complex inspiratory neurons in vitro. J Neurophysiol 88:2242-50 [PubMed]

Del Negro CA, Morgado-Valle C, Feldman JL (2002) Respiratory rhythm: an emergent network property? Neuron 34:821-30 [PubMed]

Del Negro CA, Morgado-Valle C, Hayes JA, Mackay DD, Pace RW, Crowder EA, Feldman JL (2005) Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J Neurosci 25:446-53 [PubMed]

Dobrunz LE, Huang EP, Stevens CF (1997) Very short-term plasticity in hippocampal synapses. Proc Natl Acad Sci U S A 94:14843-7 [PubMed]

Ermentrout B, Dutta-moscato J, Pinto D (2005) Bursting: The genesis of rhythm in the nervous system, Coombes S:Bressloff PC, ed. pp.385

Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. Siam J Appl Math 46:233-253

Feldman JL, Del Negro CA (2006) Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci 7:232-42 [PubMed]

Feldman JL, Smith JC (1989) Cellular mechanisms underlying modulation of breathing pattern in mammals. Ann N Y Acad Sci 563:114-30 [PubMed]

Forsythe ID, Tsujimoto T, Barnes-Davies M, Cuttle MF, Takahashi T (1998) Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20:797-807 [PubMed]

Fransen E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA (2006) Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron 49:735-46 [PubMed]

Gosgnach S, Lanuza GM, Butt SJ, Saueressig H, Zhang Y, Velasquez T, Riethmacher D, Callaway E (2006) V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440:215-9

Gosgnach S, Lanuza GM, Butt SJ, Saueressig H, Zhang Y, Velasquez T, Riethmacher D, Callaway E (2006) V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440:215-9

Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751-66 [PubMed]

Johnson SW, Seutin V, North RA (1992) Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science 258:665-7 [PubMed]

Koizumi H, Smith JC (2008) Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Botzinger complex in vitro. J Neurosci 28:1773-85 [PubMed]

Kosmidis EK, Pierrefiche O, Vibert JF (2004) Respiratory-like rhythmic activity can be produced by an excitatory network of non-pacemaker neuron models. J Neurophysiol 92:686-99 [PubMed]

Marder E (2001) Moving rhythms. Nature 410:755 [PubMed]

Mironov SL (2008) Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice. J Physiol 586:2277-91 [PubMed]

Onimaru H, Arata A, Homma I (1997) Neuronal mechanisms of respiratory rhythm generation: an approach using in vitro preparation. Jpn J Physiol 47:385-403 [PubMed]

Pace RW, Del Negro CA (2008) AMPA and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitro. Eur J Neurosci 28:2434-42 [PubMed]

Pace RW, Mackay DD, Feldman JL, Del Negro CA (2007) Inspiratory bursts in the preBotzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. J Physiol 582:113-25 [PubMed]

Pace RW, Mackay DD, Feldman JL, Del Negro CA (2007) Role of persistent sodium current in mouse preBotzinger Complex neurons and respiratory rhythm generation. J Physiol 580:485-96 [PubMed]

Paton JF (1997) Rhythmic bursting of pre- and post-inspiratory neurones during central apnoea in mature mice. J Physiol 502 ( Pt 3):623-39

Paton JF, Abdala AP, Koizumi H, Smith JC, St-John WM (2006) Respiratory rhythm generation during gasping depends on persistent sodium current. Nat Neurosci 9:311-3 [PubMed]

Pena F, Parkis MA, Tryba AK, Ramirez JM (2004) Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43:105-17 [PubMed]

Ptak K, Zummo GG, Alheid GF, Tkatch T, Surmeier DJ, McCrimmon DR (2005) Sodium currents in medullary neurons isolated from the pre-Botzinger complex region. J Neurosci 25:5159-70 [PubMed]

Purvis LK, Smith JC, Koizumi H, Butera RJ (2007) Intrinsic bursters increase the robustness of rhythm generation in an excitatory network. J Neurophysiol 97:1515-26 [PubMed]

Rekling JC, Champagnat J, Denavit-Saubie M (1996) Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro. J Neurophysiol 75:795-810 [PubMed]

Rekling JC, Feldman JL (1997) Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. J Neurophysiol 78:2483-92 [PubMed]

Rekling JC, Feldman JL (1998) PreBotzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu Rev Physiol 60:385-405 [PubMed]

Rinzel JA (1987) A formal classification of bursting mechanisms in excitable systems Proc Intl Congress Mathematicians, Gleason AM, ed. pp.1578

Rubin J (2006) Bursting inducedbyexcitatory synaptic coupling in nonidentical conditional relaxation oscillators or square-wave bursters Phys Rev E 74:1-15

Schwarzacher SW, Wilhelm Z, Anders K, Richter DW (1991) The medullary respiratory network in the rat. J Physiol 435:631-44 [PubMed]

Smith JC, Abdala AP, Koizumi H, Rybak IA, Paton JF (2007) Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms. J Neurophysiol 98:3370-87 [PubMed]

Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726-9 [PubMed]

Tazerart S, Viemari JC, Darbon P, Vinay L, Brocard F (2007) Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. J Neurophysiol 98:613-28 [PubMed]

Wang D, Grillner S, Wallen P (2006) Effects of flufenamic acid on fictive locomotion, plateau potentials, calcium channels and NMDA receptors in the lamprey spinal cord. Neuropharmacology 51:1038-46 [PubMed]

Yvon C, Czarnecki A, Streit J (2007) Riluzole-induced oscillations in spinal networks. J Neurophysiol 97:3607-20 [PubMed]

Zhong G, Masino MA, Harris-Warrick RM (2007) Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. J Neurosci 27:4507-18 [PubMed]

Zhu ZT, Munhall A, Shen KZ, Johnson SW (2004) Calcium-dependent subthreshold oscillations determine bursting activity induced by N-methyl-D-aspartate in rat subthalamic neurons in vitro. Eur J Neurosci 19:1296-304 [PubMed]

Harris KD, Dashevskiy T, Mendoza J, Garcia AJ, Ramirez JM, Shea-Brown E (2017) Different roles for inhibition in the rhythm-generating respiratory network. J Neurophysiol :jn.00174.2017 [Journal] [PubMed]

   Different roles for inhibition in the rhythm-generating respiratory network (Harris et al 2017) [Model]

Park C, Rubin JE (2013) Cooperation of intrinsic bursting and calcium oscillations underlying activity patterns of model pre-Botzinger complex neurons. J Comput Neurosci 34:345-66 [Journal] [PubMed]

   PreBotzinger Complex inspiratory neuron with NaP and CAN currents (Park and Rubin 2013) [Model]

Rubin JE, Shevtsova NA, Ermentrout GB, Smith JC, Rybak IA (2009) Multiple rhythmic states in a model of the respiratory central pattern generator. J Neurophysiol 101:2146-65 [Journal] [PubMed]

   Respiratory central pattern generator network in mammalian brainstem (Rubin et al. 2009) [Model]

(55 refs)