Computer model of clonazepam`s effect in thalamic slice (Lytton 1997)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:12631
Demonstration of the effect of a minor pharmacological synaptic change at the network level. Clonazepam, a benzodiazepine, enhances inhibition but is paradoxically useful for certain types of seizures. This simulation shows how inhibition of inhibitory cells (the RE cells) produces this counter-intuitive effect.
Reference:
1 . Lytton WW (1997) Computer model of clonazepam's effect in thalamic slice. Neuroreport 8:3339-43 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus (lateral) principal neuron; Thalamus reticular nucleus cell;
Channel(s): I Na,t; I T low threshold; I K; I CAN;
Gap Junctions:
Receptor(s): GabaA; Gaba;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Bursting; Therapeutics; Epilepsy; Calcium dynamics;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu];
Search NeuronDB for information about:  Thalamus geniculate nucleus (lateral) principal neuron; Thalamus reticular nucleus cell; GabaA; Gaba; I Na,t; I T low threshold; I K; I CAN; Gaba;
/
lytton97b
README
AMPA.mod
calciumpump_destexhe.mod *
GABAA.mod
GABAB1.mod
GABALOW.mod
HH_traub.mod *
IAHP_destexhe.mod
ICAN_destexhe.mod
ICAN_voltdep.mod
Ih_old.mod *
IT_wang.mod
IT2_huguenard.mod
NMDA.mod
bg.inc *
boxes.hoc
ctl.dat
ctlnew.dat
czp.dat
czpnew.dat
declist.hoc *
decvec.hoc *
default.hoc *
disp.hoc
Fig3.gif
Fig4.gif
geom.hoc
grvec.hoc
init.hoc
labels.hoc
local.hoc
mod_func.c
mosinit.hoc
network.hoc
                            
Note: This model only runs under UNIX (and linux) for the
current version of neuron (5.2).  Future versions of neuron for the
mac and pc will be able to run this model.

* simulation from:
Lytton WW. Computer model of clonazepam's effect in thalamic slice. 
Neuroreport, 8:3339-3343, 1997. 
Figs. 3 (Fig3.gif; reticularis cells) and 4 (Fig4.gif; thalamocortical cells), p 3342
neurrep8:3339.pdf

This simulation is very similar to the one published in the paper
  but is not identical due to variations among randomizers using
  supposedly identical algorithms.  The original was run under Sun
  Solaris.  The example files included here were produced under
  Intel Linux.  I have chosen traces from the current runs that are
  very similar to those in the publication.  However, these specific
  traces may not look identical if a different randomizer is used.
  I also graph all 64 traces from the network so that they can all
  be looked at and compared to the figure.

* COMPILE and RUN:
  nrnivmodl
RUN: 
  $CPU/special init.hoc -

* TO JUST LOOK AT PRE-SAVED DATA
  $CPU/special disp.hoc -

to look at your newly run data later modify disp.hoc line 23 
               FROM 
showfiles("ctl.dat","czp.dat")
                TO 
showfiles("ctlnew.dat","czpnew.dat")

20110411 changed euler solve method to cnexp in IAHP_destexhe.mod
ICAN_destexhe.mod as per "Integration methods for SOLVE statements"
topic in the NEURON forum
http://www.neuron.yale.edu/phpBB/viewtopic.php?f=28&t=592
-ModelDB Adminsitrator


Lytton WW (1997) Computer model of clonazepam's effect in thalamic slice. Neuroreport 8:3339-43[PubMed]

References and models cited by this paper

References and models that cite this paper

Andersen P, Andersson S (1968) Physiological Basis Of The Alpha Rhythm

Ashizawa N, Nakamura T, Watanabe T (1977) Studies on luciferase from Photobacterium phosphoreum. IX. Further studies on the spectroscopic characteristics of the enzyme-FMN intermediates. J Biochem (Tokyo) 81:1057-62 [PubMed]

Bal T, McCormick DA (1993) Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol 468:669-91 [PubMed]

Coulter DA, Huguenard JR, Prince DA (1989) Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol 414:587-604 [PubMed]

Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195-230 [Journal] [PubMed]

   Application of a common kinetic formalism for synaptic models (Destexhe et al 1994) [Model]
   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]

Destexhe A, Sejnowski TJ (1995) G protein activation kinetics and spillover of gamma-aminobutyric acid may account for differences between inhibitory responses in the hippocampus and thalamus. Proc Natl Acad Sci U S A 92:9515-9 [PubMed]

Dreifuss FE, Penry JK, Rose SW, Kupferberg HJ, Dyken P, Sato S (1975) Serum clonazepam concentrations in children with absence seizures. Neurology 25:255-8 [PubMed]

Gloor P, Fariello RG (1988) Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci 11:63-8 [PubMed]

Golomb D, Wang XJ, Rinzel J (1996) Propagation of spindle waves in a thalamic slice model. J Neurophysiol 75:750-69 [Journal] [PubMed]

Gutnick MJ, Prince DA (1975) Effects of projected cortical epileptiform discharges on neuronal activities in ventrobasal thalamus of the cat: ictal discharge. Exp Neurol 46:418-31 [PubMed]

Hines M (1993) NEURON--a program for simulation of nerve equations. Neural Systems: Analysis And Modeling, Eeckman F, ed. pp.127

Huguenard JR, Prince DA (1992) A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12:3804-17 [PubMed]

Huguenard JR, Prince DA (1994) Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. J Neurophysiol 71:2576-81 [Journal] [PubMed]

Lytton WW (1997) Brain organization: from molecules to parallel processing Contemporary Behavioral Neurology, Trimble M:Cummings J, ed. pp.5

Lytton WW, Contreras D, Destexhe A, Steriade M (1997) Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J Neurophysiol 77:1679-96 [Journal] [PubMed]

   Thalamic quiescence of spike and wave seizures (Lytton et al 1997) [Model]

Lytton WW, Destexhe A, Sejnowski TJ (1996) Control of slow oscillations in the thalamocortical neuron: a computer model. Neuroscience 70:673-84 [PubMed]

Mody I, De Koninck Y, Otis TS, Soltesz I (1994) Bridging the cleft at GABA synapses in the brain. Trends Neurosci 17:517-25 [PubMed]

Otis TS, Mody I (1992) Modulation of decay kinetics and frequency of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons. Neuroscience 49:13-32 [PubMed]

Pinault D, Bourassa J, Deschaenes M (1995) The axonal arborization of single thalamic reticular neurons in the somatosensory thalamus of the rat. Eur J Neurosci 7:31-40 [PubMed]

Pinault D, Bourassa J, Deschaenes M (1995) Thalamic reticular input to the rat visual thalamus: a single fiber study using biocytin as an anterograde tracer. Brain Res 670:147-52 [PubMed]

Rogers CJ, Twyman RE, Macdonald RL (1994) Benzodiazepine and beta-carboline regulation of single GABAA receptor channels of mouse spinal neurones in culture. J Physiol 475:69-82 [PubMed]

Ulrich D, Huguenard JR (1996) GABAB receptor-mediated responses in GABAergic projection neurones of rat nucleus reticularis thalami in vitro. J Physiol 493 ( Pt 3):845-54 [PubMed]

Ulrich D, Huguenard JR (1997) Nucleus-specific chloride homeostasis in rat thalamus. J Neurosci 17:2348-54 [PubMed]

Vergnes M, Marescaux C, Micheletti G, Depaulis A, Rumbach L, Warter JM (1984) Enhancement of spike and wave discharges by GABAmimetic drugs in rats with spontaneous petit-mal-like epilepsy. Neurosci Lett 44:91-4 [PubMed]

Destexhe A, Sejnowski TJ (2003) Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 83:1401-53 [PubMed]

Hines ML, Carnevale NT (2003) Personal Communication of NEURON bibliography

(26 refs)