Computer model of clonazepam`s effect in thalamic slice (Lytton 1997)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:12631
Demonstration of the effect of a minor pharmacological synaptic change at the network level. Clonazepam, a benzodiazepine, enhances inhibition but is paradoxically useful for certain types of seizures. This simulation shows how inhibition of inhibitory cells (the RE cells) produces this counter-intuitive effect.
Reference:
1 . Lytton WW (1997) Computer model of clonazepam's effect in thalamic slice. Neuroreport 8:3339-43 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus (lateral) principal neuron; Thalamus reticular nucleus cell;
Channel(s): I Na,t; I T low threshold; I K; I CAN;
Gap Junctions:
Receptor(s): GabaA; Gaba;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Bursting; Therapeutics; Epilepsy; Calcium dynamics;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu];
Search NeuronDB for information about:  Thalamus geniculate nucleus (lateral) principal neuron; Thalamus reticular nucleus cell; GabaA; Gaba; I Na,t; I T low threshold; I K; I CAN; Gaba;
/
lytton97b
README
AMPA.mod
calciumpump_destexhe.mod *
GABAA.mod
GABAB1.mod
GABALOW.mod
HH_traub.mod *
IAHP_destexhe.mod
ICAN_destexhe.mod
ICAN_voltdep.mod
Ih_old.mod *
IT_wang.mod
IT2_huguenard.mod
NMDA.mod
passiv.mod *
pregen.mod *
presyn.mod *
pulse.mod
rand.mod
bg.inc *
boxes.hoc
ctl.dat
ctlnew.dat
czp.dat
czpnew.dat
declist.hoc *
decvec.hoc *
default.hoc *
disp.hoc
Fig3.gif
Fig4.gif
geom.hoc
grvec.hoc
init.hoc
labels.hoc
local.hoc
mod_func.c
mosinit.hoc
network.hoc
neurrep8
nrnoc.hoc
params.hoc
presyn.inc *
queue.inc *
run.hoc
show.hoc
simctrl.hoc *
sns.inc *
snsarr.inc
snscode.hoc
snsgr.hoc
snshead.inc *
synq.inc *
xtmp
                            
: $Id$ 
TITLE passive membrane channel

UNITS {
	(mV) = (millivolt)
	(mA) = (milliamp)
}

INDEPENDENT { v FROM -100 TO 50 WITH 50	(mV) }

NEURON {
	SUFFIX Pass
	NONSPECIFIC_CURRENT i
	RANGE g, erev
}

PARAMETER {
	g = .001	(mho/cm2)
	erev = -70	(mV)
}

ASSIGNED { i	(mA/cm2)}

BREAKPOINT {
	i = g*(v - erev)
        VERBATIM
        in_passiv_breakpoint();
        ENDVERBATIM
}

VERBATIM
void in_passiv_breakpoint() {}
ENDVERBATIM



COMMENT
The passive channel is very simple but illustrates several features of
the interface to NEURON. As a SCoP or hoc model the NEURON block is
ignored.  About the only thing you can do with this as an isolated channel
in SCoP is plot the current vs the potential. Notice that models require
that all variables be declared, The calculation is done in the EQUATION
block (This name may eventually be changed to MODEL).  The intended
semantics of the equation block are that after the block is executed, ALL
variables are consistent with the value of the independent variable.
In this case, of course a trivial assignment statement suffices.
In SCoP, INDEPENDENT gives the name and range of the independent variable,
CONSTANT declares variables which generally do not change during
solution of the EQUATION block and ASSIGNED declares variables which
get values via assignment statements (as opposed to STATE variables whose
values can only be determined by solving differential or simultaneous
algebraic equations.)  The values of CONSTANTS are the default values
and can be changed in SCoP.

The NEURON block serves as the interface to NEURON. One has to imagine
many models linked to NEURON at the same time. Therefore in order to
avoid conflicts with names of variables in other mechanisms a SUFFIX
is applied to all the declared names that are accessible from NEURON.
Accessible CONSTANTS are of two types. Those appearing in the
PARAMETER list become range variables that can be used in any section
in which the mechanism is "insert"ed.  CONSTANT's that do not appear in
the PARAMETER list become global scalars which are the same for every
section.  ASSIGNED variables and STATE variables also become range variables
that depend on position in a section.
NONSPECIFIC_CURRENT specifies a list of currents not associated with
any particular ion but computed by this model
that affect the calculation of the membrane potential. I.e. a nonspecific
current adds its contribution to the total membrane current.

The following  neuron program is suitable for investigating the behavior
of the channel and determining its effect on the membrane.
create a
access a
nseg = 1
insert Passive
g_Passive=.001
erev_Passive=0
proc cur() {
	axis(0,1,1,0,.001,1) axis()
	plot(1)
	for (v=0; v < 1; v=v+.01) {
		fcurrent()
		plot(v, i_Passive)
	}
	plt(-1)
}	

proc run() {
	axis(0,3,3,0,1,1) axis()
	t = 0
	v=1
	plot(1)
	while (t < 3) {
		plot(t,v)
		fadvance()
	}
}
/* the cur() procedure uses the fcurrent() function of neuron to calculate
all the currents and conductances with all states (including v) held
constant.  In the run() procedure fadvance() integrates all equations
by one time step. In this case the Passive channel in combination with
the default capacitance of 1uF/cm2 give a membrane with a time constant of
1 ms. Thus the voltage decreases exponentially toward 0 from its initial
value of 1.

ENDCOMMENT

Lytton WW (1997) Computer model of clonazepam's effect in thalamic slice. Neuroreport 8:3339-43[PubMed]

References and models cited by this paper

References and models that cite this paper

Andersen P, Andersson S (1968) Physiological Basis Of The Alpha Rhythm

Ashizawa N, Nakamura T, Watanabe T (1977) Studies on luciferase from Photobacterium phosphoreum. IX. Further studies on the spectroscopic characteristics of the enzyme-FMN intermediates. J Biochem (Tokyo) 81:1057-62 [PubMed]

Bal T, McCormick DA (1993) Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol 468:669-91 [PubMed]

Coulter DA, Huguenard JR, Prince DA (1989) Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol 414:587-604 [PubMed]

Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195-230 [Journal] [PubMed]

   Application of a common kinetic formalism for synaptic models (Destexhe et al 1994) [Model]
   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]

Destexhe A, Sejnowski TJ (1995) G protein activation kinetics and spillover of gamma-aminobutyric acid may account for differences between inhibitory responses in the hippocampus and thalamus. Proc Natl Acad Sci U S A 92:9515-9 [PubMed]

Dreifuss FE, Penry JK, Rose SW, Kupferberg HJ, Dyken P, Sato S (1975) Serum clonazepam concentrations in children with absence seizures. Neurology 25:255-8 [PubMed]

Gloor P, Fariello RG (1988) Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci 11:63-8 [PubMed]

Golomb D, Wang XJ, Rinzel J (1996) Propagation of spindle waves in a thalamic slice model. J Neurophysiol 75:750-69 [Journal] [PubMed]

Gutnick MJ, Prince DA (1975) Effects of projected cortical epileptiform discharges on neuronal activities in ventrobasal thalamus of the cat: ictal discharge. Exp Neurol 46:418-31 [PubMed]

Hines M (1993) NEURON--a program for simulation of nerve equations. Neural Systems: Analysis And Modeling, Eeckman F, ed. pp.127

Huguenard JR, Prince DA (1992) A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12:3804-17 [PubMed]

Huguenard JR, Prince DA (1994) Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. J Neurophysiol 71:2576-81 [Journal] [PubMed]

Lytton WW (1997) Brain organization: from molecules to parallel processing Contemporary Behavioral Neurology, Trimble M:Cummings J, ed. pp.5

Lytton WW, Contreras D, Destexhe A, Steriade M (1997) Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J Neurophysiol 77:1679-96 [Journal] [PubMed]

   Thalamic quiescence of spike and wave seizures (Lytton et al 1997) [Model]

Lytton WW, Destexhe A, Sejnowski TJ (1996) Control of slow oscillations in the thalamocortical neuron: a computer model. Neuroscience 70:673-84 [PubMed]

Mody I, De Koninck Y, Otis TS, Soltesz I (1994) Bridging the cleft at GABA synapses in the brain. Trends Neurosci 17:517-25 [PubMed]

Otis TS, Mody I (1992) Modulation of decay kinetics and frequency of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons. Neuroscience 49:13-32 [PubMed]

Pinault D, Bourassa J, Deschaenes M (1995) The axonal arborization of single thalamic reticular neurons in the somatosensory thalamus of the rat. Eur J Neurosci 7:31-40 [PubMed]

Pinault D, Bourassa J, Deschaenes M (1995) Thalamic reticular input to the rat visual thalamus: a single fiber study using biocytin as an anterograde tracer. Brain Res 670:147-52 [PubMed]

Rogers CJ, Twyman RE, Macdonald RL (1994) Benzodiazepine and beta-carboline regulation of single GABAA receptor channels of mouse spinal neurones in culture. J Physiol 475:69-82 [PubMed]

Ulrich D, Huguenard JR (1996) GABAB receptor-mediated responses in GABAergic projection neurones of rat nucleus reticularis thalami in vitro. J Physiol 493 ( Pt 3):845-54 [PubMed]

Ulrich D, Huguenard JR (1997) Nucleus-specific chloride homeostasis in rat thalamus. J Neurosci 17:2348-54 [PubMed]

Vergnes M, Marescaux C, Micheletti G, Depaulis A, Rumbach L, Warter JM (1984) Enhancement of spike and wave discharges by GABAmimetic drugs in rats with spontaneous petit-mal-like epilepsy. Neurosci Lett 44:91-4 [PubMed]

Destexhe A, Sejnowski TJ (2003) Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 83:1401-53 [PubMed]

Hines ML, Carnevale NT (2003) Personal Communication of NEURON bibliography

(26 refs)