Temporal and spatial characteristics of vibrissa responses to motor commands (Simony et al. 2010)

 Download zip file 
Help downloading and running models
Accession:127512
"A mechanistic description of the generation of whisker movements is essential for understanding the control of whisking and vibrissal active touch. We explore how facial-motoneuron spikes are translated, via an intrinsic muscle, to whisker movements. This is achieved by constructing, simulating, and analyzing a computational, biomechanical model of the motor plant, and by measuring spiking to movement transformations at small and large angles using high-precision whisker tracking in vivo. ... The model provides a direct translation from motoneuron spikes to whisker movements and can serve as a building block in closed-loop motor–sensory models of active touch."
Reference:
1 . Simony E, Bagdasarian K, Herfst L, Brecht M, Ahissar E, Golomb D (2010) Temporal and spatial characteristics of vibrissa responses to motor commands. J Neurosci 30:8935-52 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Muscle model and vibrissa biomechanics;
Brain Region(s)/Organism:
Cell Type(s): Vibrissa motoneuron; Vibrissa motor plant;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s):
Implementer(s): Golomb, David [golomb at bgu.ac.il]; Simony, Erez [erez.simony at weizmann.ac.il];
% (c) Written By Erez Simony 2010, code for the model described in:  
% Simony, E., Bagdasarian K, Herfst L., Brecht M., Ahissar E, Golomb D. 
% Temporal and spatial characteristics of vibrissa responses to motor commands (2010). 
% Journal of Neuroscience, In press.


global vib_num  resting_angles intrinsic_muscle_set force_factor  MN_spikes_times 
motor_plant_parameters_small_angles
% motor_plant_parameters_large_angles

% Call the motor_plant function
% Inputs: resting_angles, intrinsic_muscle_set,MN_spikes_times, force_factor
% Ouput:  time_in_msec,delta_theta,delta_xc,delta_yc 

[time_in_msec,delta_theta,delta_xc,delta_yc]=motor_plant(resting_angles, intrinsic_muscle_set, MN_spikes_times,force_factor);




% Plot whisker angle theta(degs) for "vib_num" and "vib_num-1" whiskers.
% (vib_num=1) , most posterior whisker.

figure

plot(time_in_msec,delta_theta(:,vib_num),'g','LineWidth',3)
% hold on
% plot(time_in_msec,delta_theta(:,vib_num-1),'k','LineWidth',3)
set(gca,'Position',[0.1759 0.1576 0.7705 0.7674],...
    'LineWidth',2,...
    'FontSize',16);
xlabel('Time (ms)','FontWeight','bold','FontSize',22);
ylabel('\theta (degs)','FontWeight','bold','FontSize',22);


% Plot whisker's center of mass translations Xc,Yc for "vib_num" 
figure
subplot(2,1,1,'LineWidth',2,'FontSize',16)
plot(time_in_msec,1000*delta_xc(:,vib_num),'g','LineWidth',3)
% hold on
% plot(time_in_msec,1000*delta_xc(:,vib_num-1),'k','LineWidth',3)
ylabel('x (mm)','FontSize',22,'FontName','Arial');

subplot(2,1,2,'LineWidth',2,'FontSize',16)
plot(time_in_msec,1000*delta_yc(:,vib_num),'g','LineWidth',3)
% hold on
% plot(time_in_msec,1000*delta_yc(:,vib_num-1),'k','LineWidth',3)
xlabel('Time (ms)','FontWeight','bold','FontSize',22);
ylabel('y (mm)','FontSize',22,'FontName','Arial');


Loading data, please wait...