Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)


Help downloading and running models
Accession:127996
Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. In addition to detailed electrophysiological recordings and histological investigations of electrically coupled Golgi cells in the cerebellum, a detailed network model of these cells was created. The cell models are based on reconstructed Golgi cell morphologies and the active conductances are taken from an earlier abstract Golgi cell model (Solinas et al 2007, accession no. 112685). Our results show that gap junction coupling can sometimes be inhibitory and either promote network synchronization or trigger rapid network desynchronization depending on the synaptic input. The model is available as a neuroConstruct project and can executable scripts can be generated for the NEURON simulator.
Reference:
1 . Vervaeke K, Lorincz A, Gleeson P, Farinella M, Nusser Z, Silver RA (2010) Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input. Neuron 67:435-451 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum golgi cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I M; I K,Ca; I Calcium; I Potassium; I_AHP;
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: neuroConstruct (web link to model); NeuroML (web link to model);
Model Concept(s): Ion Channel Kinetics; Oscillations; Synchronization; Detailed Neuronal Models;
Implementer(s): Gleeson, Padraig [p.gleeson at ucl.ac.uk]; Vervaeke, Koen [k.vervaeke at ucl.ac.uk];
Search NeuronDB for information about:  GabaA; AMPA; I Na,p; I Na,t; I L high threshold; I A; I K; I M; I K,Ca; I Calcium; I Potassium; I_AHP; Gaba; Glutamate;
(located via links below)

Vervaeke K, Lorincz A, Gleeson P, Farinella M, Nusser Z, Silver RA (2010) Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input. Neuron 67:435-451[PubMed]

References and models cited by this paper

References and models that cite this paper

Arenz A, Silver RA, Schaefer AT, Margrie TW (2008) The contribution of single synapses to sensory representation in vivo. Science 321:977-80 [PubMed]

Barmack NH, Yakhnitsa V (2008) Functions of interneurons in mouse cerebellum. J Neurosci 28:1140-52 [PubMed]

Beierlein M, Gibson JR, Connors BW (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat Neurosci 3:904-10 [PubMed]

Biró AA, Holderith NB, Nusser Z (2005) Quantal size is independent of the release probability at hippocampal excitatory synapses. J Neurosci 25:223-32 [PubMed]

Buhl EH, Tamas G, Fisahn A (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol 513 ( Pt 1):117-26 [PubMed]

Buzsaki G (2006) Rhythms of the Brain

Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926-9 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Chadderton P, Margrie TW, Hausser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856-60 [PubMed]

Chow CC, Kopell N (2000) Dynamics of spiking neurons with electrical coupling. Neural Comput 12:1643-78 [PubMed]

Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393-418 [PubMed]

Courtemanche R, Lamarre Y (2005) Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol 93:2039-52 [PubMed]

Courtemanche R, Pellerin JP, Lamarre Y (2002) Local field potential oscillations in primate cerebellar cortex: modulation during active and passive expectancy. J Neurophysiol 88:771-82 [PubMed]

Crowley JJ, Fioravante D, Regehr WG (2009) Dynamics of fast and slow inhibition from cerebellar golgi cells allow flexible control of synaptic integration. Neuron 63:843-53 [PubMed]

Cruikshank SJ, Hopperstad M, Younger M, Connors BW, Spray DC, Srinivas M (2004) Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc Natl Acad Sci U S A 101:12364-9 [PubMed]

Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31:477-85 [PubMed]

Devor A, Yarom Y (2002) Electrotonic coupling in the inferior olivary nucleus revealed by simultaneous double patch recordings. J Neurophysiol 87:3048-58 [Journal] [PubMed]

Dieudonne S (1998) Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol 510 ( Pt 3):845-66 [PubMed]

Dugue GP, Brunel N, Hakim V, Schwartz E, Chat M, Levesque M, Courtemanche R, Lena C, Dieudonn (2009) Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron 61:126-39 [PubMed]

Eccles JC, Ito M, Szentagothai J (1967) The Cerebellum as a Neuronal Machine

Edgley SA, Lidierth M (1987) The discharges of cerebellar Golgi cells during locomotion in the cat. J Physiol 392:315-32 [PubMed]

Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186-9 [PubMed]

Forti L, Cesana E, Mapelli J, D'Angelo E (2006) Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. J Physiol 574:711-29 [PubMed]

FURSHPAN EJ, POTTER DD (1957) Mechanism of nerve-impulse transmission at a crayfish synapse. Nature 180:342-3 [PubMed]

Galarreta M, Erdelyi F, Szabó G, Hestrin S (2004) Electrical coupling among irregular-spiking GABAergic interneurons expressing cannabinoid receptors. J Neurosci 24:9770-8 [PubMed]

Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72-5 [PubMed]

Galarreta M, Hestrin S (2001) Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2:425-33 [PubMed]

Galarreta M, Hestrin S (2001) Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292:2295-9 [PubMed]

Galarreta M, Hestrin S (2002) Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc Natl Acad Sci U S A 99:12438-43 [PubMed]

Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75-9 [PubMed]

Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54:219-35 [Journal] [PubMed]

Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568:69-82 [Journal] [PubMed]

   [22 reconstructed morphologies on NeuroMorpho.Org]
   Voltage attenuation in CA1 pyramidal neuron dendrites (Golding et al 2005) [Model]

Hartmann MJ, Bower JM (1998) Oscillatory activity in the cerebellar hemispheres of unrestrained rats. J Neurophysiol 80:1598-604 [Journal] [PubMed]

Holtzman T, Mostofi A, Phuah CL, Edgley SA (2006) Cerebellar Golgi cells in the rat receive multimodal convergent peripheral inputs via the lateral funiculus of the spinal cord. J Physiol 577:69-80 [PubMed]

Holtzman T, Rajapaksa T, Mostofi A, Edgley SA (2006) Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. J Physiol 574:491-507 [PubMed]

Hormuzdi SG, Pais I, LeBeau FE, Towers SK, Rozov A, Buhl EH, Whittington MA, Monyer H (2001) Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31:487-95 [PubMed]

Hu H, Martina M, Jonas P (2010) Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science 327:52-8 [PubMed]

Hughes SW, Blethyn KL, Cope DW, Crunelli V (2002) Properties and origin of spikelets in thalamocortical neurones in vitro. Neuroscience 110:395-401 [PubMed]

Hughes SW, Lorincz M, Cope DW, Blethyn KL, Kekesi KA, Parri HR, Juhasz G, Crunelli V (2004) Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron 42:253-68 [PubMed]

Huntsman MM, Porcello DM, Homanics GE, DeLorey TM, Huguenard JR (1999) Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science 283:541-3 [PubMed]

Jörntell H, Ekerot CF (2006) Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J Neurosci 26:11786-97 [PubMed]

Jakab RL, Hamori J (1988) Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat Embryol (Berl) 179:81-8 [PubMed]

Kanichay RT, Silver RA (2008) Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex. J Neurosci 28:8955-67 [PubMed]

Kistler WM, De Zeeuw CI (2003) Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum 2:44-54 [PubMed]

Kosaka T, Hama K (1985) Gap junctions between non-pyramidal cell dendrites in the rat hippocampus (CA1 and CA3 regions): a combined Golgi-electron microscopy study. J Comp Neurol 231:150-61 [PubMed]

Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW (2002) Electrical synapses in the thalamic reticular nucleus. J Neurosci 22:1002-9 [PubMed]

Lewis TJ, Rinzel J (2003) Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J Comput Neurosci 14:283-309 [Journal] [PubMed]

Llinas R, Baker R, Sotelo C (1974) Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 37:560-71 [Journal] [PubMed]

Long MA, Jutras MJ, Connors BW, Burwell RD (2005) Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nat Neurosci 8:61-6 [PubMed]

Long MA, Landisman CE, Connors BW (2004) Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. J Neurosci 24:341-9 [PubMed]

Mancilla JG, Lewis TJ, Pinto DJ, Rinzel J, Connors BW (2007) Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. J Neurosci 27:2058-73 [PubMed]

Mann-Metzer P, Yarom Y (1999) Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J Neurosci 19:3298-306 [PubMed]

Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD (2000) Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci 20:5516-25 [PubMed]

Mitchell SJ, Silver RA (2003) Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38:433-45 [PubMed]

O'Connor SM, Berg RW, Kleinfeld D (2002) Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. J Neurophysiol 87:2137-48 [PubMed]

O'Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317-30 [PubMed]

Ohishi H, Ogawa-Meguro R, Shigemoto R, Kaneko T, Nakanishi S, Mizuno N (1994) Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex. Neuron 13:55-66 [PubMed]

Ostojic S, Brunel N, Hakim V (2009) Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. J Comput Neurosci 26:369-92 [PubMed]

Pellerin JP, Lamarre Y (1997) Local field potential oscillations in primate cerebellar cortex during voluntary movement. J Neurophysiol 78:3502-7 [Journal] [PubMed]

Pfeuty B, Mato G, Golomb D, Hansel D (2003) Electrical synapses and synchrony: the role of intrinsic currents. J Neurosci 23:6280-94 [PubMed]

Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842-57

Poulet JF, Petersen CC (2008) Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454:881-5 [PubMed]

Prsa M, Dash S, Catz N, Dicke PW, Thier P (2009) Characteristics of responses of Golgi cells and mossy fibers to eye saccades and saccadic adaptation recorded from the posterior vermis of the cerebellum. J Neurosci 29:250-62 [PubMed]

Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Hausser M (2007) High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450:1245-8 [PubMed]

Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999) Perception's shadow: long-distance synchronization of human brain activity. Nature 397:430-3 [PubMed]

Ros H, Sachdev RN, Yu Y, Sestan N, McCormick DA (2009) Neocortical networks entrain neuronal circuits in cerebellar cortex. J Neurosci 29:10309-20 [PubMed]

Rossi DJ, Hamann M (1998) Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABA(A) receptors and glomerular geometry. Neuron 20:783-95

Rothman JS, Cathala L, Steuber V, Silver RA (2009) Synaptic depression enables neuronal gain control. Nature 457:1015-8 [PubMed]

Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285-96 [PubMed]

Schoppa NE, Westbrook GL (2002) AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli. Nat Neurosci 5:1194-202 [PubMed]

Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32:9-18 [PubMed]

Sejnowski TJ, Paulsen O (2006) Network oscillations: emerging computational principles. J Neurosci 26:1673-6 [PubMed]

Sharp AA, Abbott LF, Marder E (1992) Artificial electrical synapses in oscillatory networks. J Neurophysiol 67:1691-4 [Journal] [PubMed]

Simat M, Parpan F, Fritschy JM (2007) Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 500:71-83 [PubMed]

Simpson JI, Hulscher HC, Sabel-Goedknegt E, Ruigrok TJ (2005) Between in and out: linking morphology and physiology of cerebellar cortical interneurons. Prog Brain Res 148:329-40 [PubMed]

Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555-86 [PubMed]

Sohal VS, Huntsman MM, Huguenard JR (2000) Reciprocal inhibitory connections regulate the spatiotemporal properties of intrathalamic oscillations. J Neurosci 20:1735-45 [PubMed]

Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D`Angelo E (2007) Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar golgi cells. Front. Cell. Neurosci. 1:2:1-12 [Journal] [PubMed]

   Cerebellar Golgi cell (Solinas et al. 2007a, 2007b) [Model]

Sotelo C, Llinas R (1972) Specialized membrane junctions between neurons in the vertebrate cerebellar cortex. J Cell Biol 53:271-89 [PubMed]

Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70-4 [PubMed]

Szabadics J, Lorincz A, Tamas G (2001) Beta and gamma frequency synchronization by dendritic gabaergic synapses and gap junctions in a network of cortical interneurons. J Neurosci 21:5824-31 [PubMed]

Tamas G, Buhl EH, Lorincz A, Somogyi P (2000) Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3:366-71 [PubMed]

Tiesinga PH, Fellous JM, Salinas E, Jose JV, Sejnowski TJ (2010) Inhibitory synchrony as a mechanism for attentional gain modulation. J Physiol Paris 98:296-314 [PubMed]

Traub RD, Kopell N, Bibbig A, Buhl EH, LeBeau FE, Whittington MA (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J Neurosci 21:9478-86 [PubMed]

Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, Dortland B (2008) Role of olivary electrical coupling in cerebellar motor learning. Neuron 58:599-612 [PubMed]

Van Der Giessen RS, Maxeiner S, French PJ, Willecke K, De Zeeuw CI (2006) Spatiotemporal distribution of Connexin45 in the olivocerebellar system. J Comp Neurol 495:173-84 [PubMed]

van Kan PL, Gibson AR, Houk JC (1993) Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol 69:74-94 [Journal] [PubMed]

Veruki ML, Hartveit E (2002) AII (Rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron 33:935-46 [PubMed]

Vos BP, Volny-Luraghi A, De Schutter E (1999) Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur J Neurosci 11:2621-34 [PubMed]

Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612-5 [PubMed]

Wiest MC, Nicolelis MA (2003) Behavioral detection of tactile stimuli during 7-12 Hz cortical oscillations in awake rats. Nat Neurosci 6:913-4 [PubMed]

Xu W, Edgley SA (2008) Climbing fibre-dependent changes in Golgi cell responses to peripheral stimulation. J Physiol 586:4951-9 [PubMed]

Diwakar S, Lombardo P, Solinas S, Naldi G, D`Angelo E (2011) Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control PLoS ONE 6(7):e21928 [Journal]

   Reconstructing cerebellar granule layer evoked LFP using convolution (ReConv) (Diwakar et al. 2011) [Model]

Garrido JA, Ros E, D`Angelo E (2013) Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study Front. Comput. Neurosci. 7:64 [Journal] [PubMed]

   Distributed synaptic plasticity and spike timing (Garrido et al. 2013) [Model]

Mattioni M, Le Novere N (2013) Integration of Biochemical and Electrical Signaling-Multiscale Model of the Medium Spiny Neuron of the Striatum. PLoS One 8:e66811 [Journal] [PubMed]

   Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013) [Model]

McDougal RA, Morse TM, Hines ML, Shepherd GM (2015) ModelView for ModelDB: online presentation of model structure Neuroinformatics 13(4):459-70 [Journal] [PubMed]

   ModelView: online structural analysis of computational models (McDougal et al. 2015) [Model]

Simões de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits 1:7:1-19 [Journal]

   Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011) [Model]

Szoboszlay M, Lorincz A, Lanore F, Vervaeke K, Silver RA, Nusser Z (2016) Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells. Neuron [Journal] [PubMed]

   [18 reconstructed morphologies on NeuroMorpho.Org]
   Functional properties of dendritic gap junctions in Cerebellar Golgi cells (Szoboszlay et al. 2016) [Model]

Torben-Nielsen B, Segev I, Yarom Y (2012) The generation of phase differences and frequency changes in a network model of inferior olive subthreshold oscillations. PLoS Comput Biol 8:e1002580 [Journal] [PubMed]

   Inferior Olive, subthreshold oscillations (Torben-Nielsen, Segev, Yarom 2012) [Model]

(99 refs)