Fast sodium channel gating in mossy fiber axons (Schmidt-Hieber et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:128079
"... To study the mechanisms underlying AP initiation in unmyelinated hippocampal mossy fibers of adult mice, we recorded sodium currents in axonal and somatic membrane patches. We demonstrate that sodium channel density in the proximal axon is ~5 times higher than in the soma. Furthermore, sodium channel activation and inactivation are ~2 times faster. Modeling revealed that the fast activation localized the initiation site to the proximal axon even upon strong synaptic stimulation, while fast inactivation contributed to energy-efficient membrane charging during APs. ..."
Reference:
1 . Schmidt-Hieber C, Bischofberger J (2010) Fast sodium channel gating supports localized and efficient axonal action potential initiation. J Neurosci 30:10233-42 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Dentate gyrus granule GLU cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation;
Implementer(s):
Search NeuronDB for information about:  Dentate gyrus granule GLU cell;
 
/
na8st
mod
hhmfb.mod
HHrates.mod
KIn.mod
na8st.mod
nakole.mod
naxkole.mod
spines.mod
                            
File not selected

<- Select file from this column.
Loading data, please wait...