Leaky integrate-and-fire model of spike frequency adaptation in the LGMD (Gabbiani and Krapp 2006)

 Download zip file 
Help downloading and running models
Accession:128449
This will reproduce Figure 9 of Gabbiani and Krapp (2006) J Neurophysiol 96:2951-2962. The figure simply shows that a leaky-integrate-and-fire model cannot reproduce spike frequency adaptation as it is seen experimentally in the LGMD neuron.
Reference:
1 . Gabbiani F, Krapp HG (2006) Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. J Neurophysiol 96:2951-62 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Locust Lobula Giant Movement Detector (LGMD) neuron; Abstract integrate-and-fire leaky neuron;
Channel(s): I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s): Spike Frequency Adaptation;
Implementer(s): Gabbiani, F;
Search NeuronDB for information about:  I K,Ca;
  
/
lif_lgmd_sims
readme.html
lif_ad.c
screenshot1.jpg
screenshot2.jpg
sim_fig_sub.m
                            

Gabbiani F, Krapp HG (2006) Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. J Neurophysiol 96:2951-62[PubMed]

References and models cited by this paper

References and models that cite this paper

Ahmed B, Anderson JC, Douglas RJ, Martin KA, Whitteridge D (1998) Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex. Cereb Cortex 8:462-76 [PubMed]

Benda J, Herz AV (2003) A universal model for spike-frequency adaptation. Neural Comput 15:2523-64 [PubMed]

Benda J, Longtin A, Maler L (2005) Spike-frequency adaptation separates transient communication signals from background oscillations. J Neurosci 25:2312-21 [PubMed]

Bernander O, Douglas RJ, Martin KA, Koch C (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc Natl Acad Sci U S A 88:11569-73 [PubMed]

Borg-Graham L, Monier C, Fregnac Y (1996) Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex. J Physiol Paris 90:185-8 [PubMed]

Borst A, Haag J (1996) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. J Comput Neurosci 3:313-36 [Journal] [PubMed]

   [11 reconstructed morphologies on NeuroMorpho.Org]
   Fly lobular plate VS cell (Borst and Haag 1996, et al. 1997, et al. 1999) [Model]

Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:419-37 [PubMed]

Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK (2002) Neural encoding of behaviourally relevant visual-motion information in the fly. Trends Neurosci 25:96-102 [PubMed]

Ermentrout B (1998) Linearization of F-I curves by adaptation. Neural Comput 10:1721-9 [PubMed]

Gabbiani F, Cohen I, Laurent G (2005) Time-dependent activation of feed-forward inhibition in a looming-sensitive neuron. J Neurophysiol 94:2150-61 [Journal] [PubMed]

Gabbiani F, Krapp HG, Hatsopoulos N, Mo CH, Koch C, Laurent G (2005) Multiplication and stimulus invariance in a looming-sensitive neuron. J Physiol Paris 98:19-34

Gabbiani F, Krapp HG, Koch C, Laurent G (2002) Multiplicative computation in a visual neuron sensitive to looming. Nature 420:320-4 [PubMed]

Gabbiani F, Krapp HG, Laurent G (1999) Computation of object approach by a wide-field, motion-sensitive neuron. J Neurosci 19:1122-41

Gabbiani F, Mo C, Laurent G (2001) Invariance of angular threshold computation in a wide-field looming-sensitive neuron. J Neurosci 21:314-29 [PubMed]

Golowasch J, Marder E (1992) Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. J Neurophysiol 67:318-31 [Journal] [PubMed]

Halliwell JV, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250:71-92 [PubMed]

Hatsopoulos N, Gabbiani F, Laurent G (1995) Elementary computation of object approach by wide-field visual neuron. Science 270:1000-3 [PubMed]

Helmchen F, Imoto K, Sakmann B (1996) Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys J 70:1069-81 [PubMed]

Henrici P (1982) Essentials of Numerical analysis

Hill AA, Lu J, Masino MA, Olsen OH, Calabrese RL (2001) A model of a segmental oscillator in the leech heartbeat neuronal network. J Comput Neurosci 10:281-302 [Journal] [PubMed]

   Leech heart interneuron network model (Hill et al 2001, 2002) [Model]

Holmes WR, Segev I, Rall W (1992) Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures. J Neurophysiol 68:1401-20 [Journal] [PubMed]

Jahnsen H, Llinas R (1984) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227-47 [PubMed]

Kiehn O, Harris-Warrick RM (1992) 5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neuron. J Neurophysiol 68:496-508 [Journal] [PubMed]

Killmann F, Gras H, Schurmann F (1999) Types, numbers and distribution of synapses on the dendritic tree of an identified visual interneuron in the brain of the locust. Cell Tissue Res 296:645-65 [PubMed]

Koch C (1999) Biophysics Of Computation: Information Processing in Single Neurons

Krahe R, Gabbiani F (2004) Burst firing in sensory systems. Nat Rev Neurosci 5:13-23 [PubMed]

Krapp HG, Gabbiani F (2005) Spatial distribution of inputs and local receptive field properties of a wide-field, looming sensitive neuron. J Neurophysiol 93:2240-53 [Journal] [PubMed]

La Camera G, Rauch A, Luscher HR, Senn W, Fusi S (2004) Minimal models of adapted neuronal response to in vivo-like input currents. Neural Comput 16:2101-24 [PubMed]

Linder B (2004) Interspike interval statistics of neurons driven by colored noise Phys Rev E 69:022901

Liu YH, Wang XJ (2004) Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. J Comput Neurosci 10:25-45 [Journal] [PubMed]

Liu Z, Golowasch J, Marder E, Abbott LF (1998) A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J Neurosci 18:2309-20 [PubMed]

   Activity dependent conductances in a neuron model (Liu et al. 1998) [Model]

Lorenzon NM, Foehring RC (1992) Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J Neurophysiol 67:350-63 [PubMed]

Luthi A, McCormick DA (1998) H-current: properties of a neuronal and network pacemaker. Neuron 21:9-12 [PubMed]

Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613-24 [PubMed]

Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363-6 [Journal] [PubMed]

   [2 reconstructed morphologies on NeuroMorpho.Org]
   Pyramidal Neuron Deep, Superficial; Aspiny, Stellate (Mainen and Sejnowski 1996) [Model]

McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782-806 [Journal] [PubMed]

Meech RW (1978) Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng 7:1-18 [PubMed]

Migliore M, Messineo L, Ferrante M (2004) Dendritic Ih selectively blocks temporal summation of unsynchronized distal inputs in CA1 pyramidal neurons. J Comput Neurosci 16:5-13 [Journal] [PubMed]

   CA1 pyramidal neuron: effects of Ih on distal inputs (Migliore et al 2004) [Model]

Migliore M, Shepherd GM (2002) Emerging rules for the distributions of active dendritic conductances. Nature Review Neuroscience 3:362-70 [Journal] [PubMed]

   Modulation of temporal integration window (Migliore, Shepherd 2002) [Model]

Milton JS, Arnold JC (1995) Introduction to Probability and Statistics (3rd ed.)

Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J, Adelman JP (2005) SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat Neurosci 8:642-9 [PubMed]

Nowak LG, Azouz R, Sanchez-Vives MV, Gray CM, McCormick DA (2003) Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. J Neurophysiol 89:1541-66 [Journal] [PubMed]

O'Shea M, Williams JL (1974) The anatomy and output connection of a locust visual interneurone; the lobula giant movement detector (LGMD) neurone J Comp Physiol 91:257-266

Peron SP, Krapp HG, Laurent G, Gabbiani F (2003) Role of dendritic morphology in the processing of looming stimuli: a compartmental modeling study Washington DC: Society for Neuroscience Program No 491.3

Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1:39-60 [Journal] [PubMed]

   CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994) [Model]

Poolos NP, Migliore M, Johnston D (2002) Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 5:767-74 [PubMed]

   CA1 pyramidal neuron: effects of Lamotrigine on dendritic excitability (Poolos et al 2002) [Model]

Rall W (1969) Time constants and electrotonic length of membrane cylinders and neurons. Biophys J 9:1483-508 [PubMed]

Rauch A, La Camera G, Luscher HR, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. J Neurophysiol 90:1598-612 [Journal] [PubMed]

Rind FC (1984) A chemical synapse between two motion detecting neurones in the locust brain. J Exp Biol 110:143-67 [PubMed]

Rind FC, Simmons PJ (1992) Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. J Neurophysiol 68:1654-66 [PubMed]

Sah P (1992) Role of calcium influx and buffering in the kinetics of Ca(2+)-activated K+ current in rat vagal motoneurons. J Neurophysiol 68:2237-47 [Journal] [PubMed]

Sah P (1996) Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 19:150-4 [PubMed]

Schlotterer GR (1977) Response of the locust descending movement detector neuronto rapidly approaching and withdrawing visual stimuli Can J Zool 55:1372-1376

Schwindt P, O'Brien JA, Crill W (1997) Quantitative analysis of firing properties of pyramidal neurons from layer 5 of rat sensorimotor cortex. J Neurophysiol 77:2484-98 [Journal] [PubMed]

Schwindt PC, Spain WJ, Foehring RC, Stafstrom CE, Chubb MC, Crill WE (1988) Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. J Neurophysiol 59:424-49 [Journal] [PubMed]

Simons DJ, Carvell GE (1989) Thalamocortical response transformation in the rat vibrissa-barrel system. J Neurophysiol 61:311-30 [PubMed]

Sobel EC, Tank DW (1994) In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation. Science 263:823-6 [PubMed]

Spruston N, Johnston D (1992) Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J Neurophysiol 67:508-29 [Journal] [PubMed]

Staley KJ, Otis TS, Mody I (1992) Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J Neurophysiol 67:1346-58 [Journal] [PubMed]

Stuart G, Spruston N, Sakmann B, Hausser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20:125-31 [PubMed]

Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635-50 [Journal] [PubMed]

Wang XJ (1994) Multiple dynamical modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking. Neuroscience 59(1):21-31 [Journal] [PubMed]

   Multiple dynamical modes of thalamic relay neurons (Wang XJ 1994) [Model]

Wang XJ (1998) Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J Neurophysiol 79:1549-66 [Journal] [PubMed]

Wang XJ, Liu Y, Sanchez-Vives MV, McCormick DA (2003) Adaptation and temporal decorrelation by single neurons in the primary visual cortex. J Neurophysiol 89:3279-93 [Journal] [PubMed]

   Temporal decorrelation by intrinsic cellular dynamics (Wang et al 2003) [Model]

Wu N, Enomoto A, Tanaka S, Hsiao CF, Nykamp DQ, Izhikevich E, Chandler SH (2005) Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability. J Neurophysiol 93:2710-22 [Journal] [PubMed]

Jones PW, Gabbiani F (2012) Impact of Neural Noise on a Sensory-Motor Pathway Signaling Impending Collision. J Neurophysiol 107:1067-1079 [Journal] [PubMed]

   LGMD Variability and logarithmic compression in dendrites (Jones and Gabbiani, 2012, 2012B) [Model]

Muresan RC, Savin C (2007) Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. J Neurophysiol 97:1911-30 [PubMed]

Peron SP, Gabbiani F (2009) Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron Nature Neuroscience 12:318-326 [Journal] [PubMed]

   Spike frequency adaptation in the LGMD (Peron and Gabbiani 2009) [Model]

Peron SP, Krapp HG, Gabbiani F (2007) Influence of electrotonic structure and synaptic mapping on the receptive field properties of a collision detecting neuron. J Neurophysiol 97:159-177 [PubMed]

(69 refs)