High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)

 Download zip file 
Help downloading and running models
"... Using a physiological computer model of hippocampus, we investigate random synaptic activity (noise) as a potential initiator of HFOs (high-frequency oscillations). We explore parameters necessary to produce these oscillations and quantify the response using the tools of stochastic resonance (SR) and coherence resonance (CR). ... Our results show that, under normal coupling conditions, synaptic noise was able to produce gamma (30–100 Hz) frequency oscillations. Synaptic noise generated HFOs in the ripple range (100–200 Hz) when the network had parameters similar to pathological findings in epilepsy: increased gap junctions or recurrent synaptic connections, loss of inhibitory interneurons such as basket cells, and increased synaptic noise. ... We propose that increased synaptic noise and physiological coupling mechanisms are sufficient to generate gamma oscillations and that pathologic changes in noise and coupling similar to those in epilepsy can produce abnormal ripples."
1 . Stacey WC, Lazarewicz MT, Litt B (2009) Synaptic noise and physiological coupling generate high-frequency oscillations in a hippocampal computational model. J Neurophysiol 102:2342-57 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Hippocampus CA1 interneuron oriens alveus GABA cell; Hippocampus CA1 basket cell;
Channel(s): I Na,t; I A; I K; I h;
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Simulation Environment: NEURON;
Model Concept(s): Oscillations;
Implementer(s): Lazarewicz, Maciej [mlazarew at gmu.edu]; Stacey, William [wstacey at med.umich.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Hippocampus CA1 interneuron oriens alveus GABA cell; GabaA; AMPA; NMDA; I Na,t; I A; I K; I h;
// Copyright 2007, The University Of Pennsylvania
// 	School of Engineering & Applied Science.
//   All rights reserved.
//   For research use only; commercial use prohibited.
//   Distribution without permission of Maciej T. Lazarewicz not permitted.
//   mlazarew@seas.upenn.edu

objref g

// =================================================================================================
// prc( obj, amp, inj, loc, gridNr, spNr )
// =================================================================================================

proc prc() { local i1, tt0, tt1, gridNr, spNr, inj, loc localobj injOb, tt, xx, obj

	if(numarg()==0) {
		printf("prc( obj, amp, inj, loc = {0-soma, 1-den}, gridNr, spNr,  )\n\n")

	obj    = $o1

	if (obj.N!=1) {
		printf("Please, set the `Number of Neurons in Network` to 1, and run prc again\n")
	amp    = 0.1
	inj    = 0.2
	loc    = 0
	gridNr = 10
	spNr   = 6
	if (numarg()>1) {
		amp = $2
		if (numarg()>2) {
			inj = $3
			if (numarg()>3) {
				loc = $4
				if (numarg()>4) {
					gridNr = $5
					if (numarg()>5)	spNr = $6

	obj.setIapp(inj, 0)

	if(obj.timevec.size()<10) {
		printf("Injected current `inj` is too small. Please increase it, and run `prc` again.\n")

	print "sss", obj.timevec.size()

	g = new Graph()
	tt0 = obj.timevec.x[spNr-1]
	tt1 = obj.timevec.x[spNr]
	xx = new Vector(gridNr+1)
	tt = new Vector(gridNr+1)

	if(loc==0) {
		printf("PRC for soma\n")
		obj.cells.object(0).soma injOb = new IClamp(0.5)
		printf("PRC for dendrite\n")
		obj.cells.object(0).den injOb = new IClamp(0.5)
	injOb.amp = amp
	injOb.dur = 1

	for i=0,gridNr {
		injOb.del = tt0+(tt1-tt0)*i/gridNr
		tt.x[i] = (tt1-obj.timevec.x[spNr])/(tt1-tt0)
		xx.x[i] = i/gridNr
		tt.mark(g, xx, "o", 10)
		g.exec_menu("View = plot")

Loading data, please wait...