Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:136095
"... We sought to measure how the activity of the network alters information flow from inputs to output patterns. Information handling by the network reflected the degree of internal connectivity. ... With greater connectivity strength, the recurrent network translated activity and information due to contribution of activity from intrinsic network dynamics. ... At still higher internal synaptic strength, the network corrupted the external information, producing a state where little external information came through. The association of increased information retrieved from the network with increased gamma power supports the notion of gamma oscillations playing a role in information processing."
Reference:
1 . Neymotin SA, Jacobs KM, Fenton AA, Lytton WW (2011) Synaptic information transfer in computer models of neocortical columns. J Comput Neurosci. 30(1):69-84 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-5 cell; Neocortex V1 interneuron basket PV cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Information transfer;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu]; Neymotin, Sam [samn at neurosim.downstate.edu];
Search NeuronDB for information about:  Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-5 cell; Neocortex V1 interneuron basket PV cell; GabaA; AMPA; NMDA; I Na,t; I A; I K;
/
ncdemo
readme.txt
A.mod
AMPA.mod *
AMPAr.mod
clampex.mod *
cp.mod *
cp2.mod *
field.mod
GABAa.mod
GABAar.mod
GABAb.mod
GABAbr.mod
H.mod
Iahp.mod *
Ican.mod *
IL.mod
IL3.mod *
infot.mod *
intf_.mod
intfsw.mod *
kdr2.mod *
kmbg.mod
misc.mod *
naf2.mod *
nap.mod *
NMDA.mod *
NMDAr.mod
nthh.mod *
ntIh.mod *
ntt.mod *
OFThpo.mod
OFThresh.mod
pregencv.mod
stats.mod
updown.mod *
vecst.mod
bg_cvode.inc
misc.h *
mosinit.hoc
netcon.inc *
netrand.inc
ofc.inc
                            
: $Id: cp.mod,v 1.10 1998/08/16 20:43:43 billl Exp $
TITLE decay of internal calcium concentration
:
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
:
: Simple model of ATPase pump with 3 kinetic constants (Destexhe 92)
:     Cai + P <-> CaP -> Cao + P  (k1,k2,k3)
: A Michaelis-Menten approximation is assumed, which reduces the complexity
: of the system to 2 parameters: 
:       kt = <tot enzyme concentration> * k3  -> TIME CONSTANT OF THE PUMP
:	kd = k2/k1 (dissociation constant)    -> EQUILIBRIUM CALCIUM VALUE
: The values of these parameters are chosen assuming a high affinity of 
: the pump to calcium and a low transport capacity (cfr. Blaustein, 
: TINS, 11: 438, 1988, and references therein).  
:
: Units checked using "modlunit" -> factor 10000 needed in ca entry
:
: VERSION OF PUMP + DECAY (decay can be viewed as simplified buffering)
:
: All variables are range variables
:
:
: This mechanism was published in:  Destexhe, A. Babloyantz, A. and 
: Sejnowski, TJ.  Ionic mechanisms for intrinsic slow oscillations in
: thalamic relay neurons. Biophys. J. 65: 1538-1552, 1993)
:
: Written by Alain Destexhe, Salk Institute, Nov 12, 1992
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX cad
	USEION ca READ ica, cai WRITE cai
	RANGE depth,kt,kt2,kd,cainf,taur,k,taur2,cainf2
        RANGE drive_channel,drive_pump,drive_pump2
}

UNITS {
	(molar) = (1/liter)			: moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)	= (ms mM)
}

CONSTANT {
	FARADAY = 96489		(coul)		: moles do not appear in units
:	FARADAY = 96.489	(k-coul)	: moles do not appear in units
}

PARAMETER {
	depth	= .1	(um)		: depth of shell
	taur	= 700	(ms)		: rate of calcium removal
	taur2	= 70	(ms)		: rate of calcium removal
	cainf	= 1e-8	(mM)
	cainf2	= 5e-5	(mM)
	cainit  = 5e-5
	kt	= 1	(mM/ms)		: estimated from k3=.5, tot=.001
	kt2	= 1	(mM/ms)		: estimated from k3=.5, tot=.001
	kd	= 5e-4	(mM)		: estimated from k2=250, k1=5e5
	kd2	= 1e-7	(mM)		: estimated from k2=250, k1=5e5
        k       = 1
}

STATE {
	cai		(mM) <1e-8> : to have tolerance of .01nM
}

INITIAL {
	cai = cainit
}

ASSIGNED {
	ica		(mA/cm2)
	drive_channel	(mM/ms)
	drive_pump	(mM/ms)
	drive_pump2	(mM/ms)
}
	
BREAKPOINT {
	SOLVE state METHOD cnexp
}

DERIVATIVE state { 

	drive_channel =  - (k*10000) * ica / (2 * FARADAY * depth)

	if (drive_channel<=0.) { drive_channel = 0. }: cannot pump inward

:	drive_pump = -tot * k3 * cai / (cai + ((k2+k3)/k1) )	: quasistat
	drive_pump = -kt * cai / (cai + kd )		: Michaelis-Menten
	drive_pump2 = -kt2 * cai / (cai + kd2 )		: Michaelis-Menten
	cai' = drive_channel+drive_pump+drive_pump2+(cainf-cai)/taur+(cainf2-cai)/taur2
}

Loading data, please wait...