Neocort. pyramidal cells subthreshold somatic voltage controls spike propagation (Munro Kopell 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:136309
There is suggestive evidence that pyramidal cell axons in neocortex may be coupled by gap junctions into an ``axonal plexus" capable of generating Very Fast Oscillations (VFOs) with frequencies exceeding 80 Hz. It is not obvious, however, how a pyramidal cell in such a network could control its output when action potentials are free to propagate from the axons of other pyramidal cells into its own axon. We address this problem by means of simulations based on 3D reconstructions of pyramidal cells from rat somatosensory cortex. We show that somatic depolarization enables propagation via gap junctions into the initial segment and main axon, while somatic hyperpolarization disables it. We show further that somatic voltage cannot effectively control action potential propagation through gap junctions on minor collaterals; action potentials may therefore propagate freely from such collaterals regardless of somatic voltage. In previous work, VFOs are all but abolished during the hyperpolarization phase of slow-oscillations induced by anesthesia in vivo. This finding constrains the density of gap junctions on collaterals in our model and suggests that axonal sprouting due to cortical lesions may result in abnormally high gap junction density on collaterals, leading in turn to excessive VFO activity and hence to epilepsy via kindling.
Reference:
1 . Munro E, Kopell N (2012) Subthreshold somatic voltage in neocortical pyramidal cells can control whether spikes propagate from the axonal plexus to axon terminals: a model study J. Neurophysiol. 107(10):2833-52 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Axon;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex U1 pyramidal intratelencephalic L2-5 cell;
Channel(s): I Na,t; I K; I Sodium; I Potassium;
Gap Junctions: Gap junctions;
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Oscillations; Detailed Neuronal Models; Axonal Action Potentials; Epilepsy;
Implementer(s): Munro, Erin [ecmun at math.bu.edu];
Search NeuronDB for information about:  Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex U1 pyramidal intratelencephalic L2-5 cell; I Na,t; I K; I Sodium; I Potassium;
/
Munro_Kopell_corticalcontrol
MATLAB
NEURON
readme.txt
                            
These folders contain all of the code necessary to generate the data
for Munro & Kopell 2012. All of the code for the axon models in NEURON
is contained in the NEURON folder. The MATLAB folder contains all code
for the neocortical network model, to analyze the antidromic geometric
ratios in the 3D reconstructions, and compiled data outputed from
NEURON used for this code. Please see the readme.txt files in those
folders for a description of the individual files.

Munro E, Kopell N (2012) Subthreshold somatic voltage in neocortical pyramidal cells can control whether spikes propagate from the axonal plexus to axon terminals: a model study J. Neurophysiol. 107(10):2833-52[PubMed]

References and models cited by this paper

References and models that cite this paper

Acker CD, Antic SD (2009) Quantitative Assessment of the Distributions of Membrane Conductances Involved in Action Potential Backpropagation Along Basal Dendrites. J Neurophysiol 101:1524-1541 [Journal] [PubMed]

   [1 reconstructed morphology on NeuroMorpho.Org]
   Excitability of PFC Basal Dendrites (Acker and Antic 2009) [Model]

Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247-51 [Journal] [PubMed]

Beaulieu C (1993) Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Res 609:284-92 [PubMed]

Bertram E (2007) The relevance of kindling for human epilepsy. Epilepsia 48 Suppl 2:65-74 [PubMed]

Boiko T, Van Wart A, Caldwell JH, Levinson SR, Trimmer JS, Matthews G (2003) Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J Neurosci 23:2306-13 [PubMed]

Bragin A, Mody I, Wilson CL, Engel J (2002) Local generation of fast ripples in epileptic brain. J Neurosci 22:2012-21 [PubMed]

Bragin A, Wilson CL, Almajano J, Mody I, Engel J (2004) High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia 45:1017-23 [PubMed]

Brecht M, Sakmann B (2002) Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. J Physiol 543:49-70 [PubMed]

Brosch M, Budinger E, Scheich H (2002) Stimulus-related gamma oscillations in primate auditory cortex. J Neurophysiol 87:2715-25 [PubMed]

Brovelli A, Lachaux JP, Kahane P, Boussaoud D (2005) High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex. Neuroimage 28:154-64 [PubMed]

Buhl DL, Harris KD, Hormuzdi SG, Monyer H, Buzsaki G (2003) Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J Neurosci 23:1013-8 [PubMed]

Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125:935-51 [PubMed]

Canolty RT, Soltani M, Dalal SS, Edwards E, Dronkers NF, Nagarajan SS, Kirsch HE, Barbaro NM, (2007) Spatiotemporal dynamics of word processing in the human brain. Front Neurosci 1:185-96 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349:1257-66

Chevassus-au-Louis N, Baraban SC, Gaïarsa JL, Ben-Ari Y (1999) Cortical malformations and epilepsy: new insights from animal models. Epilepsia 40:811-21 [PubMed]

Cheyne D, Bells S, Ferrari P, Gaetz W, Bostan AC (2008) Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. Neuroimage 42:332-42 [PubMed]

Chung F, Lu L (2002) Connected components in random graphs with given expected degree sequences Ann Comb 6:125-145

Cox CL, Denk W, Tank DW, Svoboda K (2000) Action potentials reliably invade axonal arbors of rat neocortical neurons. Proc Natl Acad Sci U S A 97:9724-8 [PubMed]

Crochet S, Petersen CC (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat Neurosci 9:608-10 [PubMed]

Crone NE, Sinai A, Korzeniewska A (2006) High-frequency gamma oscillations and human brain mapping with electrocorticography. Prog Brain Res 159:275-95 [PubMed]

Cunningham MO, Halliday DM, Davies CH, Traub RD, Buhl EH, Whittington MA (2004) Coexistence of gamma and high-frequency oscillations in rat medial entorhinal cortex in vitro. J Physiol 559:347-53 [PubMed]

Cvapp () http:--www.compneuro.org-CDROM-docs-cvapp.html

Debanne D (2004) Information processing in the axon. Nat Rev Neurosci 5:304-16 [PubMed]

Debanne D, Guerineau NC, Gahwiler BH, Thompson SM (1997) Action-potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus. Nature 389:286-9 [PubMed]

Draguhn A, Traub RD, Schmitz D, Jefferys JG (1998) Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394:189-92 [PubMed]

Edwards E, Soltani M, Deouell LY, Berger MS, Knight RT (2005) High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol 94:4269-80 [PubMed]

Edwards E, Soltani M, Kim W, Dalal SS, Nagarajan SS, Berger MS, Knight RT (2009) Comparison of time-frequency responses and the event-related potential to auditory speech stimuli in human cortex. J Neurophysiol 102:377-86 [PubMed]

Engel J (1996) Introduction to temporal lobe epilepsy. Epilepsy Res 26:141-50 [PubMed]

Engel J, Bragin A, Staba R, Mody I (2009) High-frequency oscillations: what is normal and what is not? Epilepsia 50:598-604 [PubMed]

Erdos P, Renyi A (1960) On the evolution of random graphs Publ Math Instit Hungar Acad Sci 5:17-61

Feldman ML, Peters A (1974) A study of barrels and pyramidal dendritic clusters in the cerebral cortex. Brain Res 77:55-76 [PubMed]

Gansert J, Golowasch J, Nadim F (2007) Sustained rhythmic activity in gap-junctionally coupled networks of model neurons depends on the diameter of coupled dendrites. J Neurophysiol 98:3450-60 [PubMed]

   Gap-junction coupled network activity depends on coupled dendrites diameter (Gansert et al. 2007) [Model]

Gaona CM, Sharma M, Freudenburg ZV, Breshears JD, Bundy DT, Roland J, Barbour DL, Schalk G, L (2011) Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex. J Neurosci 31:2091-100 [PubMed]

Goldstein SS, Rall W (1974) Changes of action potential shape and velocity for changing core conductor geometry. Biophys J 14:731-57 [PubMed]

Goodenough DA, Paul DL (2009) Gap junctions. Cold Spring Harb Perspect Biol 1:a002576-66

Grenier F, Timofeev I, Steriade M (2001) Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates. J Neurophysiol 86:1884-98 [Journal] [PubMed]

Grenier F, Timofeev I, Steriade M (2003) Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates. J Neurophysiol 89:841-52 [Journal]

Gutnick MJ, Lobel-Yaakov R, Rimon G (1985) Incidence of neuronal dye-coupling in neocortical slices depends on the plane of section. Neuroscience 15:659-66 [PubMed]

Gutnick MJ, Prince DA (1981) Dye coupling and possible electrotonic coupling in the guinea pig neocortical slice. Science 211:67-70 [PubMed]

Hamzei-Sichani F, Kamasawa N, Janssen WG, Yasumura T, Davidson KG, Hof PR, Wearne SL, Stewart (2007) Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze fracture replica immunogold labeling. Proc Natl Acad Sci U S A 104:12548-53 [PubMed]

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17:7-11 [Journal] [PubMed]

Hormuzdi SG, Pais I, LeBeau FE, Towers SK, Rozov A, Buhl EH, Whittington MA, Monyer H (2001) Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31:487-95 [PubMed]

Hromadka T, Zador AM (2009) Representations in auditory cortex. Curr Opin Neurobiol 19:430-3 [PubMed]

Jacobs J, Kahana MJ (2009) Neural representations of individual stimuli in humans revealed by gamma-band electrocorticographic activity. J Neurosci 29:10203-14 [PubMed]

Jones MS, Barth DS (1999) Spatiotemporal organization of fast (>200 Hz) electrical oscillations in rat Vibrissa-Barrel cortex. J Neurophysiol 82:1599-609 [PubMed]

Jones MS, MacDonald KD, Choi B, Dudek FE, Barth DS (2000) Intracellular correlates of fast (>200 Hz) electrical oscillations in rat somatosensory cortex. J Neurophysiol 84:1505-18 [PubMed]

Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M (2009) Local origin of field potentials in visual cortex. Neuron 61:35-41 [PubMed]

Koester HJ, Sakmann B (2000) Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2-3 of the young rat neocortex. J Physiol 529 Pt 3:625-46 [PubMed]

Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178-86 [Journal] [PubMed]

   [1 reconstructed morphology on NeuroMorpho.Org]
   Na+ channel dependence of AP initiation in cortical pyramidal neuron (Kole et al. 2008) [Model]

Lewis TJ, Rinzel J (2000) Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions. Network 11:299-320 [PubMed]

Lewis TJ, Rinzel J (2001) Topological target patterns and population oscillations in a network with random gap junctional coupling Neurocomputing 38-40:763-780

Lorincz A, Nusser Z (2008) Cell-type-dependent molecular composition of the axon initial segment. J Neurosci 28:14329-40 [PubMed]

Maier N, Guldenagel M, Sohl G, Siegmund H, Willecke K, Draguhn A (2002) Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. J Physiol 541:521-8 [PubMed]

Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444:491-8 [PubMed]

MATLAB () http:--www.mathworks.com-products-matlab-

Mercer A, Bannister AP, Thomson AM (2006) Electrical coupling between pyramidal cells in adult cortical regions. Brain Cell Biol 35:13-27 [PubMed]

Milojkovic BA, Wuskell JP, Loew LM, Antic SD (2005) Initiation of sodium spikelets in basal dendrites of neocortical pyramidal neurons. J Membr Biol 208:155-69 [PubMed]

Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120 ( Pt 4):701-22 [PubMed]

Mountcastle VB (2003) Introduction. Computation in cortical columns. Cereb Cortex 13:2-4 [PubMed]

Munro E, Borgers C (2010) Mechanisms of very fast oscillations in networks of axons coupled by gap junctions. J Comput Neurosci [Journal] [PubMed]

   Mechanisms of very fast oscillations in axon networks coupled by gap junctions (Munro, Borgers 2010) [Model]

Murakami S, Zhang T, Hirose A, Okada YC (2002) Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea-pig CA3 hippocampal slices. J Physiol 544:237-51 [PubMed]

Nadim F, Golowasch J (2006) Signal transmission between gap-junctionally coupled passive cables is most effective at an optimal diameter. J Neurophysiol 95:3831-43 [PubMed]

NeuroMorphoOrg () http:--NeuroMorpho.org

NEURON () http:--www.neuron.yale.edu-neuron-

Newman ME (2003) Random graphs as models of networks Handbook of Graphs and Networks: From the Genome to the Internet, Bornholdt S:Schuster HG, ed. pp.35

Nimmrich V, Maier N, Schmitz D, Draguhn A (2005) Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. J Physiol 563:663-70 [PubMed]

Palmer LM, Stuart GJ (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26:1854-63 [PubMed]

Parker PR, Cruikshank SJ, Connors BW (2009) Stability of electrical coupling despite massive developmental changes of intrinsic neuronal physiology. J Neurosci 29:9761-70 [PubMed]

Pei X, Leuthardt EC, Gaona CM, Brunner P, Wolpaw JR, Schalk G (2011) Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition. Neuroimage 54:2960-72 [PubMed]

Pitkanen A, McIntosh TK (2006) Animal models of post-traumatic epilepsy. J Neurotrauma 23:241-61 [PubMed]

Rakic P (2008) Confusing cortical columns. Proc Natl Acad Sci U S A 105:12099-100 [PubMed]

Rockland KS, Ichinohe N (2004) Some thoughts on cortical minicolumns. Exp Brain Res 158:265-77 [PubMed]

Roland J, Brunner P, Johnston J, Schalk G, Leuthardt EC (2010) Passive real-time identification of speech and motor cortex during an awake craniotomy. Epilepsy Behav 18:123-8 [PubMed]

Roopun AK, Simonotto JD, Pierce ML, Jenkins A, Nicholson C, Schofield IS, Whittaker RG, Kaise (2010) A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex. Proc Natl Acad Sci U S A 107:338-43 [PubMed]

Salazar AM, Jabbari B, Vance SC, Grafman J, Amin D, Dillon JD (1985) Epilepsy after penetrating head injury. I. Clinical correlates: a report of the Vietnam Head Injury Study. Neurology 35:1406-14 [PubMed]

Salin P, Tseng GF, Hoffman S, Parada I, Prince DA (1995) Axonal sprouting in layer V pyramidal neurons of chronically injured cerebral cortex. J Neurosci 15:8234-45 [PubMed]

Scharfman HE (2007) The neurobiology of epilepsy. Curr Neurol Neurosci Rep 7:348-54

Schmidt-Hieber C, Jonas P, Bischofberger J (2008) Action potential initiation and propagation in hippocampal mossy fibre axons. J Physiol 586:1849-57 [PubMed]

Schmitz D, Schuchmann S, Fisahn A, Draguhn A, Buhl EH, Petrasch-Parwez E, Dermietzel R, Heine (2001) Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron 31:831-40 [PubMed]

Schubert D, Kötter R, Luhmann HJ, Staiger JF (2006) Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. Cereb Cortex 16:223-36 [PubMed]

   [31 reconstructed morphologies on NeuroMorpho.Org]

Scorcioni R, Polavaram S, Ascoli GA (2008) L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc 3:866-76 [PubMed]

Shepherd GM, Svoboda K (2005) Laminar and columnar organization of ascending excitatory projections to layer 2-3 pyramidal neurons in rat barrel cortex. J Neurosci 25:5670-9 [PubMed]

   [66 reconstructed morphologies on NeuroMorpho.Org]

Shu Y, Duque A, Yu Y, Haider B, McCormick DA (2007) Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J Neurophysiol 97:746-60 [Journal] [PubMed]

   Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007) [Model]

Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA (2006) Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441:761-5 [Journal] [PubMed]

   Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007) [Model]

Shu Y, Yu Y, Yang J, McCormick DA (2007) Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc Natl Acad Sci U S A 104:11453-8 [Journal] [PubMed]

   Selective control of cortical axonal spikes by a slowly inactivating K+ current (Shu et al. 2007) [Model]

Skoglund TS, Pascher R, Berthold CH (1996) Heterogeneity in the columnar number of neurons in different neocortical areas in the rat. Neurosci Lett 208:97-100 [PubMed]

Sloper JJ, Powell TP (1979) A study of the axon initial segment and proximal axon of neurons in the primate motor and somatic sensory cortices. Philos Trans R Soc Lond B Biol Sci 285:173-97 [PubMed]

Staba RJ, Bergmann PC, Barth DS (2004) Dissociation of slow waves and fast oscillations above 200 Hz during GABA application in rat somatosensory cortex. J Physiol 561:205-14 [PubMed]

Staba RJ, Wilson CL, Bragin A, Jhung D, Fried I, Engel J (2004) High-frequency oscillations recorded in human medial temporal lobe during sleep. Ann Neurol 56:108-15 [PubMed]

Stacey WC, Lazarewicz MT, Litt B (2009) Synaptic noise and physiological coupling generate high-frequency oscillations in a hippocampal computational model. J Neurophysiol 102:2342-57 [Journal] [PubMed]

   High frequency oscillations in a hippocampal computational model (Stacey et al. 2009) [Model]

Staiger JF, Flagmeyer I, Schubert D, Zilles K, Kotter R, Luhmann HJ (2004) Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cereb Cortex 14:690-701 [PubMed]

   [26 reconstructed morphologies on NeuroMorpho.Org]

Steriade M, Nunez A, Amzica F (1993) 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252-65 [PubMed]

Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969-85 [Journal] [PubMed]

Sutor B, Hagerty T (2005) Involvement of gap junctions in the development of the neocortex. Biochim Biophys Acta 1719:59-68 [PubMed]

Teskey GC, Valentine PA (1998) Post-activation potentiation in the neocortex of awake freely moving rats. Neurosci Biobehav Rev 22:195-207 [PubMed]

Timofeev I, Grenier F, Steriade M (2001) Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci U S A 98:1924-9 [PubMed]

Traub RD (2003) Fast Oscillations and Epilepsy. Epilepsy Curr 3:77-79 [PubMed]

Traub RD, Contreras D, Cunningham MO, Murray H, Lebeau FE, Roopun A, Bibbig A, et al (2005) A single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts J Neurophysiol 93(4):2194-232 [Journal] [PubMed]

   A single column thalamocortical network model (Traub et al 2005) [Model]
   Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017) [Model]

Traub RD, Contreras D, Whittington MA (2005) Combined experimental-simulation studies of cellular and network mechanisms of epileptogenesis in vitro and in vivo. J Clin Neurophysiol 22:330-42 [PubMed]

   A single column thalamocortical network model (Traub et al 2005) [Model]
   Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017) [Model]

Traub RD, Cunningham MO, Gloveli T, LeBeau FE, Bibbig A, Buhl EH, Whittington MA (2003) GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc Natl Acad Sci U S A 100:11047-52 [PubMed]

Traub RD, Duncan R, Russell AJ, Baldeweg T, Tu Y, Cunningham MO, Whittington MA (2010) Spatiotemporal patterns of electrocorticographic very fast oscillations (> 80 Hz) consistent with a network model based on electrical coupling between principal neurons. Epilepsia 51:1587-97 [PubMed]

Traub RD, Pais I, Bibbig A, LeBeau FE, Buhl EH, Hormuzdi SG, Monyer H, Whittington MA (2003) Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proc Natl Acad Sci U S A 100:1370-4 [PubMed]

Traub RD, Schmitz D, Jefferys JG, Draguhn A (1999) High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuroscience 92:407-26 [PubMed]

Traub RD, Whittington MA, Buhl EH, LeBeau FE, Bibbig A, Boyd S, Cross H, Baldeweg T (2001) A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia 42:153-70 [PubMed]

Tsumoto T (1990) Long-term potentiation and depression in the cerebral neocortex. Jpn J Physiol 40:573-93 [PubMed]

Tuckwell HC (1988) Introduction To Theoretical Neurobiology: Vol 1, Linear Cable Theory And Dendritic Structure

Urrestarazu E, Chander R, Dubeau F, Gotman J (2007) Interictal high-frequency oscillations (100-500 Hz) in the intracerebral EEG of epileptic patients. Brain 130:2354-66 [PubMed]

Wang W, Degenhart AD, Collinger JL, Vinjamuri R, Sudre GP, Adelson PD, Holder DL, Leuthardt E (2009) Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements. Conf Proc IEEE Eng Med Biol Soc 2009:586-9 [PubMed]

Wang Y, Barakat A, Zhou H (2010) Electrotonic coupling between pyramidal neurons in the neocortex. PLoS One 5:e10253-66 [PubMed]

Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12:395-410 [PubMed]

   [204 reconstructed morphologies on NeuroMorpho.Org]

Wang Y, Zhang G, Zhou H, Barakat A, Querfurth H (2009) Opposite effects of low and high doses of Abeta42 on electrical network and neuronal excitability in the rat prefrontal cortex. PLoS One 4:e8366-9 [PubMed]

Waxman SG, Kocsis JD, Stys PK (1995) The axon: structure, function and pathophysiology, Waxman SG:Kocsis JD:Stys PK, ed.

Worrell GA, Gardner AB, Stead SM, Hu S, Goerss S, Cascino GJ, Meyer FB, Marsh R, Litt B (2008) High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain 131:928-37 [PubMed]

Worrell GA, Parish L, Cranstoun SD, Jonas R, Baltuch G, Litt B (2004) High-frequency oscillations and seizure generation in neocortical epilepsy. Brain 127:1496-506 [PubMed]

Ylinen A, Bragin A, Nadasdy Z, Jando G, Szabo I, Sik A, Buzsaki G (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15:30-46 [PubMed]

Vladimirov N, Tu Y, Traub RD (2013) Synaptic gating at axonal branches, and sharp-wave ripples with replay: a simulation study Eur J Neurosci. 38(10):3435-47 [Journal] [PubMed]

   Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013) [Model]

(117 refs)