Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010)

 Download zip file 
Help downloading and running models
Accession:136315
A set of 9 multi-compartmental rat GP neuron models (585 compartments) differing only in their expression of dendritic fast sodium channels were compared in their synaptic integration properties. Dendritic fast sodium channels were found to increase the importance of distal synapses (both excitatory AND inhibitory), increase spike timing variability with in vivo-like synaptic input, and make the model neurons highly sensitive to clustered synchronous excitation.
Reference:
1 . Edgerton JR, Hanson JE, Gunay C, Jaeger D (2010) Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. J Neurosci 30:15146-59 [PubMed]
2 . Edgerton JR, Jaeger D (2011) Dendritic Sodium Channels Promote Active Decorrelation and Reduce Phase Locking to Parkinsonian Input Oscillations in Model Globus Pallidus Neurons J. Neurosci. 31:10919-10936
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Basal ganglia;
Cell Type(s): Globus pallidus neuron;
Channel(s): I Na,p; I Na,t; I A; I K; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s): GabaA; AMPA;
Gene(s): Kv4.1 KCND1;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Action Potential Initiation; Dendritic Action Potentials; Coincidence Detection; Active Dendrites; Influence of Dendritic Geometry; Detailed Neuronal Models; Synaptic Integration;
Implementer(s): Gunay, Cengiz [cgunay at emory.edu]; Edgerton, Jeremy R. [jedgert at emory.edu]; Hanson, Jesse E.; Jaeger, Dieter [djaeger at emory.edu];
Search NeuronDB for information about:  GabaA; AMPA; I Na,p; I Na,t; I A; I K; I h; I K,Ca; I Calcium; Gaba; Glutamate;
  
/
Edgerton_etal_2010_GPmodel
common
matlab_reader
run_example
shellscripts
README
                            
Instructions for running simulations with the set of GP neuron models from
Edgerton JR, Hanson JE, Gunay C, Jaeger D (2010). Dendritic sodium channels 
regulate network integration in globus pallidus neurons: a modeling study. 
J Neurosci 30: 15146-59.

DIRECTORY STRUCTURE:

  common: contains the model description files and some utility functions for
    setting up a simulation.

    common/biophysics: ion channel, synapse and passive biophysics descriptions
    common/morphol: cell morphology descriptions
    common/library: scripts to create a library of template objects during the
        simulation
    common/functions: various implementation scripts for the simulations
    common/comptlists: lists of model compartments for various purposes such
        as where to put synapses, which compartments to save outputs from, etc.

  shellscripts: linux shell scripts to help run the simulations

  run_example: scripts to run two different types of example simulations

    run_example/run_slice.g: example simulations with no synaptic inputs but
        with somatic current injections like those often used in slice
        experiments.

    run_example/run_vivo.g: example simulations with synaptic inputs active
        throughout the dendritic tree. Synapses have random timing in these
        simulations.

  matlab_reader: a plugin written in C that enables you to load the
        output data into Matlab.
        --> compile using the Matlab mex compiler in a Linux shell:
          > mex -output readgenesis readgenesis.c
     

TUTORIAL:

  First, you must have genesis 2.3 installed on your machine.

  Download and unzip the model files. 

  Navigate to the run_example directory.

  To run the "slice" simulations, execute the following commands:

    > ../shellscripts/create_perlhash_param_db pars_slice.par

    > ../shellscripts/runbatch_local_perlhash.sh run_slice_example.g pars_slice.par 1 1

        This command runs a simulation using the first row of parameters listed
            in the pars_slice.par file. If it runs without any problem you
            should see a data file appear in the data_slice directory named
            1_mtype_1_scaleMeth_0_sclTau_-200_pAinjected_slice_example_run_v.bin

    > ../shellscripts/runbatch_local_perlhash.sh run_slice_example.g pars_slice.par 2 72

        This command runs each of the remaining 71 parameter combinations in the
            pars_slice.par file sequentially. Once complete, there should be
            72 data files in the data_slice directory, one for each parameter
            set.


  To run the "vivo" simulations, simply repeat the same steps with the vivo
        example scripts.

    > ../shellscripts/create_perlhash_param_db pars_vivo.par

    > ../shellscripts/runbatch_local_perlhash.sh run_vivo_example.g pars_vivo.par 1 1

    > ../shellscripts/runbatch_local_perlhash.sh run_vivo_example.g pars_vivo.par 2 18


  To visualize the data in Matlab: 
    First compile the reader:
      > mex -output readgenesis readgenesis.c
        
    Add the reader directory to your Matlab path, then run the following
        commands from within Matlab:

    % Load the data into the workspace
    >> tdat = readgenesis('data_slice/1_mtype_1_scaleMeth_0_sclTau_-200_pAinjected_slice_example_run_v.bin', 1);

    % Change the y-scale from volts to millivolts
    >> tdat = tdat .* 1e3;

    % Plot the data
    >> figure; plot([1e-4:1e-4:5], tdat);


Submitted by: 
    Jeremy R. Edgerton < jeremy.edgerton AT gmail.com >, 12/2010

Co-authors:
    Jesse E. Hanson < hanson.jesse AT gene.com >
    Cengiz Gunay < cgunay AT emory.edu >
    Dieter Jaeger < djaeger AT emory.edu >

Edgerton JR, Hanson JE, Gunay C, Jaeger D (2010) Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. J Neurosci 30:15146-59[PubMed]

References and models cited by this paper

References and models that cite this paper

Patterning of globus pallidus local field potentials differs between Parkinson's disease and dystonia. Brain 126:2597-608 [PubMed]

Acker CD, Antic SD (2009) Quantitative Assessment of the Distributions of Membrane Conductances Involved in Action Potential Backpropagation Along Basal Dendrites. J Neurophysiol 101:1524-1541 [Journal] [PubMed]

   [1 reconstructed morphology on NeuroMorpho.Org]
   Excitability of PFC Basal Dendrites (Acker and Antic 2009) [Model]

Bernard V, Bolam JP (1998) Subcellular and subsynaptic distribution of the NR1 subunit of the NMDA receptor in the neostriatum and globus pallidus of the rat: co-localization at synapses with the GluR2-3 subunit of the AMPA receptor. Eur J Neurosci 10:3721-36 [PubMed]

Bevan MD, Booth PA, Eaton SA, Bolam JP (1998) Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J Neurosci 18:9438-52 [PubMed]

Bischofberger J, Jonas P (1997) Action potential propagation into the presynaptic dendrites of rat mitral cells. J Physiol 504 ( Pt 2):359-65 [PubMed]

Burkhardt JM, Constantinidis C, Anstrom KK, Roberts DC, Woodward DJ (2007) Synchronous oscillations and phase reorganization in the basal ganglia during akinesia induced by high-dose haloperidol. Eur J Neurosci 26:1912-24 [PubMed]

Buzsaki G, Penttonen M, Nadasdy Z, Bragin A (1996) Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc Natl Acad Sci U S A 93:9921-5 [PubMed]

Callaway JC, Lasser-Ross N, Ross WN (1995) IPSPs strongly inhibit climbing fiber-activated [Ca2+]i increases in the dendrites of cerebellar Purkinje neurons. J Neurosci 15:2777-87 [PubMed]

Cantrell AR, Catterall WA (2001) Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2:397-407 [PubMed]

Cantrell AR, Smith RD, Goldin AL, Scheuer T, Catterall WA (1997) Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel alpha subunit. J Neurosci 17:7330-8 [PubMed]

Chan CS, Shigemoto R, Mercer JN, Surmeier DJ (2004) HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. J Neurosci 24:9921-32 [PubMed]

Chang HT, Wilson CJ, Kitai ST (1981) Single neostriatal efferent axons in the globus pallidus: a light and electron microscopic study. Science 213:915-8 [PubMed]

Deister CA, Chan CS, Surmeier J, Wilson CJ (2009) Calcium-Activated SK Channels Influence Voltage-Gated Ion Channels to Determine the Precision of Firing in Globus Pallidus Neurons J. Neurosci. 29:8452-8461 [Journal] [PubMed]

   Model of SK current`s influence on precision in Globus Pallidus Neurons (Deister et al. 2009) [Model]

DeLong MR (1971) Activity of pallidal neurons during movement. J Neurophysiol 34:414-27 [Journal] [PubMed]

Difiglia M, Pasik P, Pasik T (1982) A Golgi and ultrastructural study of the monkey globus pallidus. J Comp Neurol 212:53-75 [PubMed]

Falls WM, Park MR, Kitai ST (1983) An intracellular HRP study of the rat globus pallidus. II. Fine structural characteristics and synaptic connections of medially located large GP neurons. J Comp Neurol 221:229-45 [PubMed]

Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142-51 [PubMed]

Filion M, Tremblay L, Bedard PJ (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165-76 [PubMed]

Gasparini S, Magee JC (2006) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26:2088-100 [PubMed]

Gasparini S, Migliore M, Magee JC (2004) On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci 24:11046-11056 [Journal] [PubMed]

   CA1 pyramidal neuron: dendritic spike initiation (Gasparini et al 2004) [Model]

Gulledge AT, Kampa BM, Stuart GJ (2005) Synaptic integration in dendritic trees. J Neurobiol 64:75-90 [PubMed]

Gunay C, Edgerton JR, Jaeger D (2008) Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 28:7476-91 [Journal] [PubMed]

   [7 reconstructed morphologies on NeuroMorpho.Org]
   Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008) [Model]

Hanson JE, Smith Y (2002) Subcellular distribution of high-voltage-activated calcium channel subtypes in rat globus pallidus neurons. J Comp Neurol 442:89-98 [PubMed]

Hanson JE, Smith Y, Jaeger D (2004) Sodium channels and dendritic spike initiation at excitatory synapses in globus pallidus neurons. J Neurosci 24:329-40 [PubMed]

Hardie JB, Pearce RA (2006) Active and passive membrane properties and intrinsic kinetics shape synaptic inhibition in hippocampal CA1 pyramidal neurons. J Neurosci 26:8559-69 [Journal] [PubMed]

Heimer G, Bar-Gad I, Goldberg JA, Bergman H (2002) Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism. J Neurosci 22:7850-5

Herzog RI, Liu C, Waxman SG, Cummins TR (2003) Calmodulin binds to the C terminus of sodium channels Nav1.4 and Nav1.6 and differentially modulates their functional properties. J Neurosci 23:8261-70 [PubMed]

Hu XT, Dong Y, Zhang XF, White FJ (2005) Dopamine D2 receptor-activated Ca2+ signaling modulates voltage-sensitive sodium currents in rat nucleus accumbens neurons. J Neurophysiol 93:1406-17 [PubMed]

Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357:244-6 [PubMed]

Jarsky T, Roxin A, Kath WL, Spruston N (2005) Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci 8:1667-76 [Journal] [PubMed]

   CA1 pyramidal neuron synaptic integration (Jarsky et al. 2005) [Model]

Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10:3421-38 [PubMed]

Kennel MB, Shlens J, Abarbanel HD, Chichilnisky EJ (2005) Estimating entropy rates with Bayesian confidence intervals. Neural Comput 17:1531-76 [PubMed]

Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94:3730-42 [Journal] [PubMed]

Kim HG, Beierlein M, Connors BW (1995) Inhibitory control of excitable dendrites in neocortex. J Neurophysiol 74:1810-4 [Journal] [PubMed]

Kita H, Kitai ST (1994) The morphology of globus pallidus projection neurons in the rat: an intracellular staining study. Brain Res 636:308-19 [PubMed]

Kita H, Nambu A, Kaneda K, Tachibana Y, Takada M (2004) Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. J Neurophysiol 92:3069-84 [PubMed]

Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci U S A 80:2799-802 [PubMed]

Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178-86 [Journal] [PubMed]

   [1 reconstructed morphology on NeuroMorpho.Org]
   Na+ channel dependence of AP initiation in cortical pyramidal neuron (Kole et al. 2008) [Model]

Kole MH, Letzkus JJ, Stuart GJ (2007) Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55:633-47 [PubMed]

Komendantov AO, Ascoli GA (2009) Dendritic excitability and neuronal morphology as determinants of synaptic efficacy. J Neurophysiol 101:1847-1866 [Journal] [PubMed]

Kostal L, Lansky P, Rospars JP (2007) Neuronal coding and spiking randomness. Eur J Neurosci 26:2693-701 [PubMed]

Kuhn AA, Kempf F, Brucke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, Trottenberg T, Kup (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. J Neurosci 28:6165-73 [PubMed]

Kuhn AA, Trottenberg T, Kivi A, Kupsch A, Schneider GH, Brown P (2005) The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson's disease. Exp Neurol 194:212-20 [PubMed]

Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2002) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. Brain 125:1196-209 [PubMed]

Lipowsky R, Gillessen T, Alzheimer C (1996) Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. J Neurophysiol 76:2181-91 [Journal] [PubMed]

London M, Hausser M (2005) Dendritic computation. Annu Rev Neurosci 28:503-32 [PubMed]

London M, Larkum ME, Hausser M (2008) Predicting the synaptic information efficacy in cortical layer 5 pyramidal neurons using a minimal integrate-and-fire model. Biol Cybern 99:393-401 [PubMed]

London M, Schreibman A, Hausser M, Larkum ME, Segev I (2002) The information efficacy of a synapse. Nat Neurosci 5:332-40 [PubMed]

Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50:291-307 [PubMed]

Magee JC, Johnston D (1995) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487 ( Pt 1):67-90 [PubMed]

Magill PJ, Bolam JP, Bevan MD (2000) Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. J Neurosci 20:820-33 [PubMed]

Mallet N, Pogosyan A, Marton LF, Bolam JP, Brown P, Magill PJ (2008) Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J Neurosci 28:14245-58 [PubMed]

Mallet N, Pogosyan A, Sharott A, Csicsvari J, Bolam JP, Brown P, Magill PJ (2008) Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci 28:4795-806 [PubMed]

Martina M, Vida I, Jonas P (2000) Distal initiation and active propagation of action potentials in interneuron dendrites. Science 287:295-300 [PubMed]

Mel BW (1993) Synaptic integration in an excitable dendritic tree. J Neurophysiol 70:1086-101 [Journal] [PubMed]

Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ (2007) Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci 27:13552-66 [Journal] [PubMed]

   Nav1.6 sodium channel model in globus pallidus neurons (Mercer et al. 2007) [Model]

Migliore M, Shepherd GM (2002) Emerging rules for the distributions of active dendritic conductances. Nature Review Neuroscience 3:362-70 [Journal] [PubMed]

   Modulation of temporal integration window (Migliore, Shepherd 2002) [Model]

Millhouse OE (1986) Pallidal neurons in the rat. J Comp Neurol 254:209-27 [PubMed]

Mori K, Nowycky MC, Shepherd GM (1984) Synaptic excitatory and inhibitory interactions at distal dendritic sites on mitral cells in the isolated turtle olfactory bulb. J Neurosci 4:2291-6 [PubMed]

Nini A, Feingold A, Slovin H, Bergman H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol 74:1800-5 [Journal] [PubMed]

Oviedo H, Reyes AD (2002) Boosting of neuronal firing evoked with asynchronous and synchronous inputs to the dendrite. Nat Neurosci 5:261-6 [PubMed]

Paquet M, Smith Y (1996) Differential localization of AMPA glutamate receptor subunits in the two segments of the globus pallidus and the substantia nigra pars reticulata in the squirrel monkey. Eur J Neurosci 8:229-33 [PubMed]

Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128-54 [PubMed]

Park MR, Falls WM, Kitai ST (1982) An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopic analysis. J Comp Neurol 211:284-94 [PubMed]

Percheron G, Filion M (1991) Parallel processing in the basal ganglia: up to a point. Trends Neurosci 14:55-9

Percheron G, Yelnik J, François C (1984) A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 227:214-27 [PubMed]

Rall W (1964) Theoretical significance of dendritic trees for neuronal input output relations Neural Theory and Modeling, Reiss RF, ed. pp.73 [Journal]

   Effects of synaptic location and timing on synaptic integration (Rall 1964) [Model]

Raz A, Vaadia E, Bergman H (2000) Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci 20:8559-71

Rudolph M, Destexhe A (2003) A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J Neurosci 23:2466-76 [PubMed]

Rumsey CC, Abbott LF (2006) Synaptic democracy in active dendrites. J Neurophysiol 96:2307-18 [PubMed]

Sadek AR, Magill PJ, Bolam JP (2007) A single-cell analysis of intrinsic connectivity in the rat globus pallidus. J Neurosci 27:6352-62 [PubMed]

Sato F, Lavallee P, Levesque M, Parent A (2000) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417:17-31 [PubMed]

Schultheiss NW, Edgerton JR, Jaeger D (2010) Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration J. Neurosci. 30(7):2767-2782 [Journal] [PubMed]

   GP Neuron, somatic and dendritic phase response curves (Schultheiss et al. 2011) [Model]

Segev I, Parnas I (1983) Synaptic integration mechanisms. Theoretical and experimental investigation of temporal postsynaptic interactions between excitatory and inhibitory inputs. Biophys J 41:41-50 [PubMed]

Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870-96 [PubMed]

Sharott A, Magill PJ, Harnack D, Kupsch A, Meissner W, Brown P (2005) Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. Eur J Neurosci 21:1413-22 [PubMed]

Shen GY, Chen WR, Midtgaard J, Shepherd GM, Hines ML (1999) Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. J Neurophysiol 82:3006-20 [Journal] [PubMed]

   Action potential initiation in the olfactory mitral cell (Shen et al 1999) [Model]

Shink E, Bevan MD, Bolam JP, Smith Y (1996) The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73:335-57 [PubMed]

Shink E, Smith Y (1995) Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey. J Comp Neurol 358:119-41 [PubMed]

Shlens J, Kennel MB, Abarbanel HD, Chichilnisky EJ (2007) Estimating information rates with confidence intervals in neural spike trains. Neural Comput 19:1683-719 [PubMed]

Sjostrom PJ, Rancz EA, Roth A, Hausser M (2008) Dendritic excitability and synaptic plasticity. Physiol Rev 88:769-840 [PubMed]

Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353-87 [PubMed]

Soares J, Kliem MA, Betarbet R, Greenamyre JT, Yamamoto B, Wichmann T (2004) Role of external pallidal segment in primate parkinsonism: comparison of the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism and lesions of the external pallidal segment. J Neurosci 24:6417-26

Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334-50 [PubMed]

Soltis RP, Anderson LA, Walters JR, Kelland MD (1994) A role for non-NMDA excitatory amino acid receptors in regulating the basal activity of rat globus pallidus neurons and their activation by the subthalamic nucleus. Brain Res 666:21-30 [PubMed]

Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206-21 [PubMed]

Stuart G, Hausser M (1994) Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13:703-12 [PubMed]

Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69-72 [PubMed]

Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST (1992) Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci U S A 89:10178-82 [PubMed]

Urbain N, Gervasoni D, Souliare F, Lobo L, Rentero N, Windels F, Astier B, Savasta M, Fort P, (2000) Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat. Eur J Neurosci 12:3361-74 [PubMed]

Waters J, Schaefer A, Sakmann B (2005) Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog Biophys Mol Biol 87:145-70 [PubMed]

Willems FMJ, Shtarkov YM, Tjalkens T (1995) The context tree weighting method basic properties. IEEE Trans. Info. Theory IT-41:653-664

Williams SR, Stuart GJ (2000) Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 20:1307-17 [PubMed]

   Thalamic Relay Neuron: I-T current (Williams, Stuart 2000) [Model]

Williams SR, Stuart GJ (2002) Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295:1907-10 [PubMed]

Williams SR, Stuart GJ (2003) Role of dendritic synapse location in the control of action potential output. Trends Neurosci 26:147-54 [PubMed]

Wilson CJ, Phelan KD (1982) Dual topographic representation of neostriatum in the globus pallidus of rats. Brain Res 243:354-9 [PubMed]

Xu J, Kang N, Jiang L, Nedergaard M, Kang J (2005) Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons. J Neurosci 25:1750-60 [PubMed]

Yelnik J (2002) Functional anatomy of the basal ganglia. Mov Disord 17 Suppl 3:S15-21 [PubMed]

Yelnik J, Percheron G, François C (1984) A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations. J Comp Neurol 227:200-13 [PubMed]

Damodaran S, Evans RC, Blackwell KT (2014) Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. J Neurophysiol 111:836-48 [Journal] [PubMed]

   Synchronicity of fast-spiking interneurons balances medium-spiny neurons (Damodaran et al. 2014) [Model]

Edgerton JR, Jaeger D (2011) Dendritic Sodium Channels Promote Active Decorrelation and Reduce Phase Locking to Parkinsonian Input Oscillations in Model Globus Pallidus Neurons J. Neurosci. 31:10919-10936 [Journal]

   Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010) [Model]

Gunay C, Sieling FH, Dharmar L, Lin WH, Wolfram V, Marley R, Baines RA, Prinz AA (2015) Distal spike initiation zone location estimation by morphological simulation of ionic current filtering demonstrated in a novel model of an identified Drosophila motoneuron. PLoS Comput Biol 11:e1004189 [Journal] [PubMed]

   Drosophila 3rd instar larval aCC motoneuron (Gunay et al. 2015) [Model]

(102 refs)

Edgerton JR, Jaeger D (2011) Dendritic Sodium Channels Promote Active Decorrelation and Reduce Phase Locking to Parkinsonian Input Oscillations in Model Globus Pallidus Neurons J. Neurosci. 31:10919-10936

References and models cited by this paper

References and models that cite this paper

Patterning of globus pallidus local field potentials differs between Parkinson's disease and dystonia. Brain 126:2597-608 [PubMed]

Bar-Gad I, Heimer G, Ritov Y, Bergman H (2003) Functional correlations between neighboring neurons in the primate globus pallidus are weak or nonexistent. J Neurosci 23:4012-6 [PubMed]

Berens P (2009) CircStat: a MATLAB toolbox for circular statistics J Stat Software 31:1-21

Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507-20 [Journal] [PubMed]

Best J, Park C, Terman D, Wilson C (2007) Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks. J Comput Neurosci 23:217-35 [Journal] [PubMed]

Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ (2002) Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 25:525-31 [PubMed]

Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP (2010) Chronux: a platform for analyzing neural signals. J Neurosci Methods 192:146-51 [PubMed]

Bokil H, Tchernichovsky O, Mitra PP (2006) Dynamic phenotypes: time series analysis techniques for characterizing neuronal and behavioral dynamics. Neuroinformatics 4:119-28 [PubMed]

Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926-9 [PubMed]

Cantrell AR, Catterall WA (2001) Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2:397-407 [PubMed]

Cantrell AR, Smith RD, Goldin AL, Scheuer T, Catterall WA (1997) Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel alpha subunit. J Neurosci 17:7330-8 [PubMed]

Chan CS, Glajch KE, Gertler TS, Guzman JN, Mercer JN, Lewis AS, Goldberg AB, Tkatch T, Shigem (2011) HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease. Nat Neurosci 14:85-92 [PubMed]

Chan CS, Shigemoto R, Mercer JN, Surmeier DJ (2004) HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. J Neurosci 24:9921-32 [PubMed]

Chen L, Cui QL, Yung WH (2009) Neurokinin-1 receptor activation in globus pallidus. Front Neurosci 3:58-8 [PubMed]

Chen L, Yung KK, Yung WH (2006) Neurotensin selectively facilitates glutamatergic transmission in globus pallidus. Neuroscience 141:1871-8 [PubMed]

Deister CA, Chan CS, Surmeier J, Wilson CJ (2009) Calcium-Activated SK Channels Influence Voltage-Gated Ion Channels to Determine the Precision of Firing in Globus Pallidus Neurons J. Neurosci. 29:8452-8461 [Journal] [PubMed]

   Model of SK current`s influence on precision in Globus Pallidus Neurons (Deister et al. 2009) [Model]

DeLong MR (1971) Activity of pallidal neurons during movement. J Neurophysiol 34:414-27 [Journal] [PubMed]

Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18:995-1008 [PubMed]

Edgerton JR, Hanson JE, Gunay C, Jaeger D (2010) Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. J Neurosci 30:15146-59 [Journal] [PubMed]

   Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010) [Model]

Efron B (1987) Better bootstrap confidence intervals J Am Stat Assoc 82:171-185

Elias S, Joshua M, Goldberg JA, Heimer G, Arkadir D, Morris G, Bergman H (2007) Statistical properties of pauses of the high-frequency discharge neurons in the external segment of the globus pallidus. J Neurosci 27:2525-38 [PubMed]

Falls WM, Park MR, Kitai ST (1983) An intracellular HRP study of the rat globus pallidus. II. Fine structural characteristics and synaptic connections of medially located large GP neurons. J Comp Neurol 221:229-45 [PubMed]

Filion M, Tremblay L, Bedard PJ (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165-76 [PubMed]

Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209-24 [PubMed]

Goldberg JA, Boraud T, Maraton S, Haber SN, Vaadia E, Bergman H (2002) Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease. J Neurosci 22:4639-53 [Journal] [PubMed]

Gunay C, Edgerton JR, Jaeger D (2008) Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 28:7476-91 [Journal] [PubMed]

   [7 reconstructed morphologies on NeuroMorpho.Org]
   Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008) [Model]

Hanson JE, Jaeger D (2002) Short-term plasticity shapes the response to simulated normal and parkinsonian input patterns in the globus pallidus. J Neurosci 22:5164-72 [PubMed]

Hanson JE, Smith Y, Jaeger D (2004) Sodium channels and dendritic spike initiation at excitatory synapses in globus pallidus neurons. J Neurosci 24:329-40 [PubMed]

Hashimoto K, Kita H (2008) Serotonin activates presynaptic and postsynaptic receptors in rat globus pallidus. J Neurophysiol 99:1723-32 [PubMed]

Heimer G, Bar-Gad I, Goldberg JA, Bergman H (2002) Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism. J Neurosci 22:7850-5

Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I (2010) Spatial remapping of cortico-striatal connectivity in Parkinson's disease. Cereb Cortex 20:1175-86 [PubMed]

Herzog RI, Liu C, Waxman SG, Cummins TR (2003) Calmodulin binds to the C terminus of sodium channels Nav1.4 and Nav1.6 and differentially modulates their functional properties. J Neurosci 23:8261-70 [PubMed]

Hessler NA, Shirke AM, Malinow R (1993) The probability of transmitter release at a mammalian central synapse. Nature 366:569-72 [PubMed]

Holgado AJ, Terry JR, Bogacz R (2010) Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. J Neurosci 30:12340-52 [PubMed]

Hu XT, Dong Y, Zhang XF, White FJ (2005) Dopamine D2 receptor-activated Ca2+ signaling modulates voltage-sensitive sodium currents in rat nucleus accumbens neurons. J Neurophysiol 93:1406-17 [PubMed]

Israel Z, Bergman H (2008) Pathophysiology of the basal ganglia and movement disorders: from animal models to human clinical applications. Neurosci Biobehav Rev 32:367-77 [PubMed]

Kita H, Kitai ST (1994) The morphology of globus pallidus projection neurons in the rat: an intracellular staining study. Brain Res 636:308-19 [PubMed]

Kuhn AA, Kempf F, Brucke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, Trottenberg T, Kup (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. J Neurosci 28:6165-73 [PubMed]

Kuhn AA, Trottenberg T, Kivi A, Kupsch A, Schneider GH, Brown P (2005) The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson's disease. Exp Neurol 194:212-20 [PubMed]

Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2002) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. Brain 125:1196-209 [PubMed]

Mallet N, Pogosyan A, Marton LF, Bolam JP, Brown P, Magill PJ (2008) Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J Neurosci 28:14245-58 [PubMed]

Mallet N, Pogosyan A, Sharott A, Csicsvari J, Bolam JP, Brown P, Magill PJ (2008) Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci 28:4795-806 [PubMed]

Nakanishi H, Hori N, Kastuda N (1985) Neostriatal evoked inhibition and effects of dopamine on globus pallidal neurons in rat slice preparations. Brain Res 358:282-6 [PubMed]

Nini A, Feingold A, Slovin H, Bergman H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol 74:1800-5 [Journal] [PubMed]

Percheron G, Filion M (1991) Parallel processing in the basal ganglia: up to a point. Trends Neurosci 14:55-9 [PubMed]

Percheron G, Yelnik J, François C (1984) A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 227:214-27 [PubMed]

Poisik OV, Smith Y, Conn PJ (2007) D1- and D2-like dopamine receptors regulate signaling properties of group I metabotropic glutamate receptors in the rat globus pallidus. Eur J Neurosci 26:852-62 [PubMed]

Raz A, Vaadia E, Bergman H (2000) Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci 20:8559-71

Rosenmund C, Clements JD, Westbrook GL (1993) Nonuniform probability of glutamate release at a hippocampal synapse. Science 262:754-7 [PubMed]

Ruskin DN, Bergstrom DA, Kaneoke Y, Patel BN, Twery MJ, Walters JR (1999) Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia. J Neurophysiol 81:2046-55 [PubMed]

Ruskin DN, Marshall JF (1995) D1 dopamine receptors influence Fos immunoreactivity in the globus pallidus and subthalamic nucleus of intact and nigrostriatal-lesioned rats. Brain Res 703:156-64 [PubMed]

Sadek AR, Magill PJ, Bolam JP (2007) A single-cell analysis of intrinsic connectivity in the rat globus pallidus. J Neurosci 27:6352-62 [PubMed]

Sato F, Lavallee P, Levesque M, Parent A (2000) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417:17-31 [PubMed]

Schultheiss NW, Edgerton JR, Jaeger D (2010) Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration J. Neurosci. 30(7):2767-2782 [Journal] [PubMed]

   GP Neuron, somatic and dendritic phase response curves (Schultheiss et al. 2011) [Model]

Sharott A, Magill PJ, Harnack D, Kupsch A, Meissner W, Brown P (2005) Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. Eur J Neurosci 21:1413-22 [PubMed]

Shen GY, Chen WR, Midtgaard J, Shepherd GM, Hines ML (1999) Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. J Neurophysiol 82:3006-20 [Journal] [PubMed]

   Action potential initiation in the olfactory mitral cell (Shen et al 1999) [Model]

Shin RM, Masuda M, Miura M, Sano H, Shirasawa T, Song WJ, Kobayashi K, Aosaki T (2003) Dopamine D4 receptor-induced postsynaptic inhibition of GABAergic currents in mouse globus pallidus neurons. J Neurosci 23:11662-72 [PubMed]

Sims RE, Woodhall GL, Wilson CL, Stanford IM (2008) Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro. Eur J Neurosci 28:2401-8 [PubMed]

Soares J, Kliem MA, Betarbet R, Greenamyre JT, Yamamoto B, Wichmann T (2004) Role of external pallidal segment in primate parkinsonism: comparison of the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism and lesions of the external pallidal segment. J Neurosci 24:6417-26

Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST (1992) Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci U S A 89:10178-82 [PubMed]

Tass P, Rosenblum M, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund H (1998) Detection of n:m phase locking from noisy data: Application to magnetoencephalography Phys Rev Lett 81:3291-3294

Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22:2963-76 [Journal] [PubMed]

   Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007) [Model]

Thomson DJ (1982) Spectrum estimation and harmonic analysis Proc IEEE 70:1055-1096

Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155-68 [PubMed]

Urbain N, Gervasoni D, Souliare F, Lobo L, Rentero N, Windels F, Astier B, Savasta M, Fort P, (2000) Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat. Eur J Neurosci 12:3361-74 [PubMed]

Urbain N, Rentero N, Gervasoni D, Renaud B, Chouvet G (2002) The switch of subthalamic neurons from an irregular to a bursting pattern does not solely depend on their GABAergic inputs in the anesthetic-free rat. J Neurosci 22:8665-75 [PubMed]

Wahl-Schott C, Biel M (2009) HCN channels: structure, cellular regulation and physiological function. Cell Mol Life Sci 66:470-94 [PubMed]

Willems FMJ, Shtarkov YM, Tjalkens T (1995) The context tree weighting method basic properties. IEEE Trans. Info. Theory IT-41:653-664

Xu J, Kang N, Jiang L, Nedergaard M, Kang J (2005) Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons. J Neurosci 25:1750-60 [PubMed]

Yelnik J (2002) Functional anatomy of the basal ganglia. Mov Disord 17 Suppl 3:S15-21 [PubMed]

(70 refs)