Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011)

 Download zip file 
Help downloading and running models
Simulation and fitting of two-compartment (active soma, passive dendrite) for different classes of cortical neurons. The fitting technique indirectly matches neuronal currents derived from somatic membrane potential data rather than fitting the voltage traces directly. The method uses an analytic solution for the somatic ion channel maximal conductances given approximate models of the channel kinetics, membrane dynamics and dendrite. This approach is tested on model-derived data for various cortical neurons.
1 . Lepora NF, Overton PG, Gurney K (2012) Efficient fitting of conductance-based model neurons from somatic current clamp. J Comput Neurosci 32:1-24 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I Na,t; I L high threshold; I T low threshold; I K; I M;
Gap Junctions:
Simulation Environment: GENESIS; MATLAB;
Model Concept(s): Parameter Fitting; Simplified Models; Parameter sensitivity;
Implementer(s): Lepora, Nathan [n.lepora at];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; I Na,t; I L high threshold; I T low threshold; I K; I M;
// Channels for minimum HH models in Popischill 2008
// modified from genesis/scripts/neuron/channels.g
// note: used l'hopital rule on tabchannel defs 
// remove singularity to prevent runtime error 

float ECa       = 0.120
float Vx 		= 2e-3    

//           CaT CHANNEL (Destexhe 1996)
function make_CaT
    create tabchannel CaT
    setfield ^ Ek {ECa} Gbar {1} Xpower 2 Ypower 1 Zpower 0
    setfield CaT instant {INSTANTX}

	 int   xdivs=5000
	 float xmin=-0.100, xmax=0.050, dx={(xmax-xmin)/xdivs}
	 call CaT TABCREATE X {xdivs} {xmin} {xmax}
     call CaT TABCREATE Y {xdivs} {xmin} {xmax}
	 float valtau_X, valX_inf, valtau_Y, valY_inf, Vm
	 int i		 
	 for (i=0; i<={xdivs}; i=i+1)
	 	 Vm = xmin + i*dx
	 	 valtau_X = 1e-3  // fake value - instant 
	 	 valX_inf = 1/(1+{exp {-(Vm+Vx+57e-3)/6.2e-3}})
	 	 valtau_Y = (30.8 + (211.4 + {exp {(Vm+Vx+113.2e-3)/5e-3}}))/(3.7*(1 + {exp {(Vm+Vx+84e-3)/3.2e-3}}))
		 valY_inf = 1/( 1 + { exp {(Vm+Vx+81e-3)/4e-3} } )
		 setfield CaT X_A->table[{i}] {valtau_X} X_B->table[{i}] {valX_inf}
       setfield CaT Y_A->table[{i}] {valtau_Y} Y_B->table[{i}] {valY_inf}
	 tweaktau CaT X
     tweaktau CaT Y

// make channel

Loading data, please wait...