Sensory feedback in an oscillatory interference model of place cell activity (Monaco et al. 2011)

 Download zip file 
Help downloading and running models
Accession:137676
Many animals use a form of dead reckoning known as 'path integration' to maintain a sense of their location as they explore the world. However, internal motion signals and the neural activity that integrates them can be noisy, leading inevitably to inaccurate position estimates. The rat hippocampus and entorhinal cortex support a flexible system of spatial representation that is critical to spatial learning and memory. The position signal encoded by this system is thought to rely on path integration, but it must be recalibrated by familiar landmarks to maintain accuracy. To explore the interaction between path integration and external landmarks, we present a model of hippocampal activity based on the interference of theta-frequency oscillations that are modulated by realistic animal movements around a track. We show that spatial activity degrades with noise, but introducing external cues based on direct sensory feedback can prevent this degradation. When these cues are put into conflict with each other, their interaction produces a diverse array of response changes that resembles experimental observations. Feedback driven by attending to landmarks may be critical to navigation and spatial memory in mammals.
Reference:
1 . Monaco JD, Knierim JJ, Zhang K (2011) Sensory feedback, error correction, and remapping in a multiple oscillator model of place cell activity Frontiers in Computational Neuroscience 5(0):39
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus; Dentate gyrus; Thalamus;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Oscillations; Synchronization; Spatio-temporal Activity Patterns; Simplified Models; Rate-coding model neurons; Place cell/field; Noise Sensitivity; Envelope synthesis; Phase interference;
Implementer(s): Monaco, Joseph D. ;
COPYRIGHT AND SOFTWARE LICENSE

Except as noted below, usage rights for this software and associated 
materials are provided under the terms of the open source MIT License
contained below. A copy of this license is also found at
http://www.opensource.org/licenses/mit-license.php.

Copyright (c) 2011 Johns Hopkins University. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Loading data, please wait...