Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139421
"Abnormalities in oscillations have been suggested to play a role in schizophrenia. We studied theta-modulated gamma oscillations in a computer model of hippocampal CA3 in vivo with and without simulated application of ketamine, an NMDA receptor antagonist and psychotomimetic. Networks of 1200 multi-compartment neurons (pyramidal, basket and oriens-lacunosum moleculare, OLM, cells) generated theta and gamma oscillations from intrinsic network dynamics: basket cells primarily generated gamma and amplified theta, while OLM cells strongly contributed to theta. ..."
Reference:
1 . Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW (2011) Ketamine disrupts theta modulation of gamma in a computer model of hippocampus Journal of Neuroscience 31(32):11733-11743 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal cell; Hippocampus CA3 interneuron basket cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron;
Channel(s): I L high threshold; I A; I K; I K,Ca;
Gap Junctions:
Receptor(s): GabaA; NMDA; Glutamate;
Gene(s): HCN1; HCN2;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Oscillations; Synchronization; Therapeutics; Pathophysiology; Schizophrenia; Information transfer; Brain Rhythms;
Implementer(s): Lazarewicz, Maciej [mlazarew at gmu.edu]; Neymotin, Sam [samn at neurosim.downstate.edu];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal cell; Hippocampus CA3 interneuron basket cell; GabaA; NMDA; Glutamate; I L high threshold; I A; I K; I K,Ca; Gaba; Glutamate;
/
hpcdemo
readme.html
CA1ih.mod *
CA1ika.mod *
CA1ikdr.mod *
CA1ina.mod *
caolmw.mod *
capr.mod *
icaolmw.mod *
icapr.mod *
iholmkop.mod *
iholmw.mod *
ihpyrkop.mod *
kahppr.mod *
kaolmkop.mod *
kapyrkop.mod *
kcaolmw.mod *
kcpr.mod *
kdrbwb.mod *
kdrolmkop.mod *
kdrpr.mod *
kdrpyrkop.mod *
misc.mod *
MyExp2Syn.mod *
MyExp2SynAlpha.mod *
MyExp2SynBB.mod *
MyExp2SynNMDA.mod *
MyExp2SynNMDABB.mod *
nafbwb.mod *
nafolmkop.mod *
nafpr.mod *
nafpyrkop.mod *
stats.mod
vecst.mod *
wrap.mod *
aux_fun.inc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
geom.hoc *
geom.py *
grvec.hoc *
init.hoc *
labels.hoc *
local.hoc *
misc.h *
mosinit.py
network.py *
nqs.hoc *
nqs_utils.hoc *
nrnoc.hoc *
params.py
pyinit.py *
run.py
screenshot.png
simctrl.hoc *
stats.hoc *
syncode.hoc *
xgetargs.hoc *
                            
: $Id: MyExp2SynBB.mod,v 1.4 2010/12/13 21:27:51 samn Exp $ 
NEURON {
:  THREADSAFE
  POINT_PROCESS MyExp2SynBB
  RANGE tau1, tau2, e, i, g, Vwt, gmax
  NONSPECIFIC_CURRENT i
}

UNITS {
  (nA) = (nanoamp)
  (mV) = (millivolt)
  (uS) = (microsiemens)
}

PARAMETER {
  tau1=.1 (ms) <1e-9,1e9>
  tau2 = 10 (ms) <1e-9,1e9>
  e=0	(mV)
  gmax = 1e9 (uS)
  Vwt   = 0 : weight for inputs coming in from vector
}

ASSIGNED {
  v (mV)
  i (nA)
  g (uS)
  factor
  etime (ms)
}

STATE {
  A (uS)
  B (uS)
}

INITIAL {
  LOCAL tp

  Vwt = 0    : testing

  if (tau1/tau2 > .9999) {
    tau1 = .9999*tau2
  }
  A = 0
  B = 0
  tp = (tau1*tau2)/(tau2 - tau1) * log(tau2/tau1)
  factor = -exp(-tp/tau1) + exp(-tp/tau2)
  factor = 1/factor
}

BREAKPOINT {
  SOLVE state METHOD cnexp
  g = B - A
  if (g>gmax) {g=gmax}: saturation
  i = g*(v - e)
}

DERIVATIVE state {
  A' = -A/tau1
  B' = -B/tau2
}

NET_RECEIVE(w (uS)) {LOCAL ww
  ww=w
  A = A + ww*factor
  B = B + ww*factor
}

Loading data, please wait...